This study investigates the projected changes in the East Asian westerly jet(EAJ)under six global warming targets(1.5℃,2.0℃,2.5℃,3.0℃,3.5℃,and 4.0℃)relative to the present climate,using the outputs of CMIP5 mode...This study investigates the projected changes in the East Asian westerly jet(EAJ)under six global warming targets(1.5℃,2.0℃,2.5℃,3.0℃,3.5℃,and 4.0℃)relative to the present climate,using the outputs of CMIP5 models.The results show that the westerly tends to weaken slightly under the 1.5℃warming target.Under the 2.0℃target,it is projected to intensify south of the EAJ’s axis(approximately 40°N)and decay north of the axis.This change becomes increasingly evident under the 2.5℃and higher warming targets,which suggests that the EAJ’s axis will move farther and farther southward,but its intensity will change little with increasing global warming.Further analyses suggest that the change in the EAJ is closely related to the inhomogeneous rising rate of air temperature in the mid–upper troposphere.The relatively slow-rising air temperature in the mid–upper troposphere over the EAJ’s entrance and exit regions will lead to a negative(positive)meridional temperature gradient to the south(north),and will then accelerate(decelerate)the westerly on the EAJ’s south/north side.展开更多
Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tib...Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.展开更多
Evapotranspiration is the key driving factor of the earth’s water cycle, and an important component of surface water and energy balances. Therefore, it also reflects the geothermal regulation function of ecohydrologi...Evapotranspiration is the key driving factor of the earth’s water cycle, and an important component of surface water and energy balances. Therefore, it also reflects the geothermal regulation function of ecohydrological process. The Qinghai-Tibet Plateau is the birthplace of important rivers such as the Yangtze River and the Yellow River. The regional water balance is of great significance to regional ecological security. In this study, ARTS, a dualsource remote sensing evapotranspiration model developed on a global scale, is used to evaluate the actual evapotranspiration(ET) in the Qinghai-Tibet Plateau from 1982 to 2014, using meteorological data interpolated from observations, as well as FPAR and LAI data obtained by satellite remote sensing. The characteristics of seasonal. interannual and dynamic changes of evapotranspiration were analyzed. The rates at which meteorological factors contribute to evapotranspiration are calculated by sensitivity analysis and multiple linear regression analysis,and the dominant factors affecting the change of evapotranspiration in the Qinghai-Tibet Plateau are discussed.The results show that:(1) The estimated values can explain more than 80% of the seasonal variation of the observed values(R^2 = 0.80, P < 0.001), which indicates that the model has a high accuracy.(2) The evapotranspiration in the whole year, spring, summer and autumn show significant increasing trends in the past 30 years, but have significant regional differences. Whether in the whole year or in summer, the southern Tibetan Valley shows a significant decreasing trend(more than 20 mm per 10 years), while the Ali, Lhasa Valley and Haibei areas show increasing trends(more than 10 mm per 10 years).(3) Sensitivity analysis and multiple linear regression analysis show that the main factor driving the interannual change trend is climate warming, followed by the non-significant increase of precipitation. However, vegetation change also has a considerable impact, and together with climate factors, it can explain 56% of the interannual variation of evapotranspiration(multiple linear regression equation R^2= 0.56, P < 0.001). The mean annual evapotranspiration of low-cover grassland was 26.9% of high-cover grassland and 21.1% of medium-cover grassland, respectively. Considering significant warming and insignificant wetting in the Qinghai-Tibet Plateau, the increase of surface evapotranspiration will threaten the regional ecological security at the cost of glacial melting water. Effectively protecting the ecological security and maintaining the sustainable development of regional society are difficult and huge challenges.展开更多
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious im...China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.展开更多
基金This research was supported by the National Key R&D Program of China[grant number 2017YFA0603802]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 41675084].
文摘This study investigates the projected changes in the East Asian westerly jet(EAJ)under six global warming targets(1.5℃,2.0℃,2.5℃,3.0℃,3.5℃,and 4.0℃)relative to the present climate,using the outputs of CMIP5 models.The results show that the westerly tends to weaken slightly under the 1.5℃warming target.Under the 2.0℃target,it is projected to intensify south of the EAJ’s axis(approximately 40°N)and decay north of the axis.This change becomes increasingly evident under the 2.5℃and higher warming targets,which suggests that the EAJ’s axis will move farther and farther southward,but its intensity will change little with increasing global warming.Further analyses suggest that the change in the EAJ is closely related to the inhomogeneous rising rate of air temperature in the mid–upper troposphere.The relatively slow-rising air temperature in the mid–upper troposphere over the EAJ’s entrance and exit regions will lead to a negative(positive)meridional temperature gradient to the south(north),and will then accelerate(decelerate)the westerly on the EAJ’s south/north side.
基金funded by the National Basic Research Program (also called 973 Program) (Grant No.2007CB411504)the National Natural Science Foundation of China (Grant No.40925002 and No.40730634)
文摘Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.
基金National Key Basic Research and Development Program(2017YFC0503803)National Natural Science Foundation of China(31861143015)Qinghai Province S&T Program(2018-ZJ-T09)
文摘Evapotranspiration is the key driving factor of the earth’s water cycle, and an important component of surface water and energy balances. Therefore, it also reflects the geothermal regulation function of ecohydrological process. The Qinghai-Tibet Plateau is the birthplace of important rivers such as the Yangtze River and the Yellow River. The regional water balance is of great significance to regional ecological security. In this study, ARTS, a dualsource remote sensing evapotranspiration model developed on a global scale, is used to evaluate the actual evapotranspiration(ET) in the Qinghai-Tibet Plateau from 1982 to 2014, using meteorological data interpolated from observations, as well as FPAR and LAI data obtained by satellite remote sensing. The characteristics of seasonal. interannual and dynamic changes of evapotranspiration were analyzed. The rates at which meteorological factors contribute to evapotranspiration are calculated by sensitivity analysis and multiple linear regression analysis,and the dominant factors affecting the change of evapotranspiration in the Qinghai-Tibet Plateau are discussed.The results show that:(1) The estimated values can explain more than 80% of the seasonal variation of the observed values(R^2 = 0.80, P < 0.001), which indicates that the model has a high accuracy.(2) The evapotranspiration in the whole year, spring, summer and autumn show significant increasing trends in the past 30 years, but have significant regional differences. Whether in the whole year or in summer, the southern Tibetan Valley shows a significant decreasing trend(more than 20 mm per 10 years), while the Ali, Lhasa Valley and Haibei areas show increasing trends(more than 10 mm per 10 years).(3) Sensitivity analysis and multiple linear regression analysis show that the main factor driving the interannual change trend is climate warming, followed by the non-significant increase of precipitation. However, vegetation change also has a considerable impact, and together with climate factors, it can explain 56% of the interannual variation of evapotranspiration(multiple linear regression equation R^2= 0.56, P < 0.001). The mean annual evapotranspiration of low-cover grassland was 26.9% of high-cover grassland and 21.1% of medium-cover grassland, respectively. Considering significant warming and insignificant wetting in the Qinghai-Tibet Plateau, the increase of surface evapotranspiration will threaten the regional ecological security at the cost of glacial melting water. Effectively protecting the ecological security and maintaining the sustainable development of regional society are difficult and huge challenges.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40830957)the National Key Basic Research Program (Grant Nos. 2013CB430200, 2013CB430206)
文摘China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.