[Objective] This study was to monitor the hot damage of high temperature on rice in summer by using MODIS data to estimate air temperature. [Method] A new statistical algorithm was introduced for daytime air temperatu...[Objective] This study was to monitor the hot damage of high temperature on rice in summer by using MODIS data to estimate air temperature. [Method] A new statistical algorithm was introduced for daytime air temperature (Ta) retrievals over east China by using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, and the high temperature monitoring for rice in south China in 2007 summer was used to demonstrate. [Result] High temperature plays a key role in rice production during rice heading stage in summer in southern China. Using MODIS data to monitor the hot damage of high temperature is a feasible way to relieve agricultural disasters. [Conclusion] The result of this study provided a method to monitor hot damage of high temperature tn rice in summer of China.展开更多
In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ i...In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ in OTC-1 and 3-5℃ in OTC-2 in the alpine meadow ecosystem on the Qinghai- Tibetan Plateau.Results show that the annual air temperatures under OTC-1 and OTC-2 were 1.21℃ and 3.62℃ higher than the Control,respectively.The entirely-frozen period of shallow soil in the active layer was shortened and the fully thawed period was prolonged with temperature increase.The maximum penetration depth and duration of the negative isotherm during the entirely-frozen period decreased, and soil freezing was retarded in the local scope of the soil profile when temperature increased.Meanwhile, the positive isotherm during the fully-thawed period increased,and the soil thawing was accelerated.Soil moisture under different manipulations decreased with the temperature increase at the same depth. During the early freezing period and the early fully- thawed period,the maximum soil moisture under the Control manipulation was at 0.2 m deep,whereas under OTC-1 and OTC-2 manipulations,the maximum soil moisture were at 0.4-0.5 m deep. These results indicate that elevated temperatures led to a decrease of the moisture in the surface soil.The coupled relationship between soil temperature and moisture was significantly affected by the temperature increase.During the freezing and thawing processes, the soil temperature and moisture under different manipulations fit the regression model given by the equationθV=a/{1+exp[b(TS+c)]}+d.展开更多
The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, an...The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a^(-1) and ~0.003℃ a^(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.展开更多
By using daily air temperature and precipitation data, and the weather phenomena data of daily snowfall from 98 meteorological stations over the Qinghai-Tibetan Plateau (QTP), this paper performs an "at-risk" eval...By using daily air temperature and precipitation data, and the weather phenomena data of daily snowfall from 98 meteorological stations over the Qinghai-Tibetan Plateau (QTP), this paper performs an "at-risk" evaluation on snowfall and accumulated snow over the QTP under current climate situation and future climate warming condition. When rainfall, snowfall, or accumulated snow weather phenomena occur, critical values are determined based on dally air temperature and precipitation for current climate conditions. Air temperature of 0 ℃ is defined as the critical value of temperature for rainfall or snowfall, while 0 ℃ air temperature and 4.0 mm (autumn) or 3.0 mm (spring) snowfall amounts are defined as the critical values for accumulated snowfall. Analyses based on the above critical values disclose that under current climate condition, stations with "at-risk" accumulated snow account for 33% and 36% of all stations, and the "at-risk" snowfall stations reach 78% and 81% in autumn and spring, respectively. Spatially, most stations with "at-risk" accumulated snow are located on the southern and eastern edge of the QTP, and stations with "at-risk" snowfall are also apparent at the northern edge. If the air temperature increases by 2.5 ℃ in 2050, only the snowfall at a few "at-risk" snowfall stations will transform into rainfall, while most "at-risk" accumulated snow stations will face the problem that snowfall is hardly accumulated. Additionally, most stations will become "at-risk" accumulated snow stations, indicating that both the snow depth and the snow cover duration will decline in most areas of the QTP, including a delay of the start date and an advancing of the end date of snow cover.展开更多
We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to ...We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to seven notes,the last of which had the longest duration.Three formants(harmonics)were clearly distinguishable from the audio spectrogram.The dominant frequency ranged from 411-1534 Hz,and was either the first or the second formant.The number of notes within a call was positively correlated to air temperature,so that calls contained more notes during the day.Also,the dominant frequency appeared to be lower at the highest temperature.展开更多
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ...The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.展开更多
The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Funct...The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Function (EOF) method, to understand the detailed features of its temporal and spatial variations. The results show that there was a high consistency of the monthly mean surface air temperature, with a secondarily different variation between the north and the south of the plateau. Warming trend has existed at all stations since the 1960s, while the warming rates were different in various zones. The source regions of big rivers had intense warming tendency. June, November and December were the top three fast-warming months since the 1960s; while April, July and September presented dramatic warming tendency during the last decade.展开更多
The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The ...The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The oxidation mechanisms of the foams were discussed. The results show that the resistance to the oxidation of the Ni-16Cr-xA1 based alloy at 1 000 ℃ increases with the content of A1 increasing from 4.5% to 9.0%. Complex oxide products are formed on the surface of the superalloy foams after the oxidation. Cr203 and A1203 are the predominant oxides for the scales of the foams with 4.5% A1 and 9% A1, respectively. Excellent high temperature oxidation resistance and superior pore conformation stability for the Ni-16Cr-xA1 based superalloy foam with 9% A1 can be mainly attributed to the formation of relatively continuous and protective A1203 oxides on the surface of the foam.展开更多
Taking squid as raw material, the effects of frying temperature and frying time on the quality of squid chips were studied under the conditions of normal pressure frying and high-temperature hot-air frying respectivel...Taking squid as raw material, the effects of frying temperature and frying time on the quality of squid chips were studied under the conditions of normal pressure frying and high-temperature hot-air frying respectively. And the best processing technology of squid chips was determined. The results showed that crispy squid chips can be obtained by frying the squid after vacuum freeze-drying, and the best processing technology of squid chips is to treat the material by hot air drying at 160℃ for 4 min after pretreatment, seasoning, protease treatment, pre-freezing and freeze-drying. The squid chips made by this technology have a flavor of frying, tightly-shrunken surface tissue, a little browning, less hardness, crispness and no greasy taste.展开更多
To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, ...To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air. The effects of A1203, SiO2, kaolin, dry powder and bentonite on ash fusibility temperatures were studied, based upon the relationship between briquette ash components and ash fusibility. The results show that the increasing of ash fusibility temperatures by adding the same amount (11%, w) of refractory agents follows the sequence of SiO2, bentonite, dry powder, kaolin, A1203, with the softening temperatures being elevated by 37.2, 57.6, 60.4, 82.6 and 104.4℃. With the same ratio of SIO2/A1203 in briquette, adding the A1203 component is more effective than SiO2 for raising ash fusibility temperatures. In this paper, inexpensive kaolin and bentonite rich in A1203 are found to be better refractory agents, and the suitable adding quantities are 9% and 11%, respectively.展开更多
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar ...A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.展开更多
This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polyme...This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of flow rate, relative humidity and type of supply gas as well as Tini on the temperature distribution on reaction surface. The results obtained in 02 supply case show that, the temperature rise at the segments near the outlet of cell decreases with increasing Tini irrespective of relative humidity of supply gas (RH), while it is not seen in air supply case. Regarding the segments except near the outlet in 02 supply case, Treact - Tini increases with increasing Tini for 40% RH. The temperature distribution on reaction surface in 02 supply case is wider with increasing Tini as well as decreasing RH, though that in air supply case is relatively even.展开更多
文摘[Objective] This study was to monitor the hot damage of high temperature on rice in summer by using MODIS data to estimate air temperature. [Method] A new statistical algorithm was introduced for daytime air temperature (Ta) retrievals over east China by using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, and the high temperature monitoring for rice in south China in 2007 summer was used to demonstrate. [Result] High temperature plays a key role in rice production during rice heading stage in summer in southern China. Using MODIS data to monitor the hot damage of high temperature is a feasible way to relieve agricultural disasters. [Conclusion] The result of this study provided a method to monitor hot damage of high temperature tn rice in summer of China.
基金founded by The National Science Foundation of China(No.40730634 andNo.40925002)
文摘In this study,effects of elevated air temperatures on thermal and hydrologic process of the shallow soil in the active layer were investigated. Open-top chambers(OTCs)were utilized to increase air temperatures 1-2℃ in OTC-1 and 3-5℃ in OTC-2 in the alpine meadow ecosystem on the Qinghai- Tibetan Plateau.Results show that the annual air temperatures under OTC-1 and OTC-2 were 1.21℃ and 3.62℃ higher than the Control,respectively.The entirely-frozen period of shallow soil in the active layer was shortened and the fully thawed period was prolonged with temperature increase.The maximum penetration depth and duration of the negative isotherm during the entirely-frozen period decreased, and soil freezing was retarded in the local scope of the soil profile when temperature increased.Meanwhile, the positive isotherm during the fully-thawed period increased,and the soil thawing was accelerated.Soil moisture under different manipulations decreased with the temperature increase at the same depth. During the early freezing period and the early fully- thawed period,the maximum soil moisture under the Control manipulation was at 0.2 m deep,whereas under OTC-1 and OTC-2 manipulations,the maximum soil moisture were at 0.4-0.5 m deep. These results indicate that elevated temperatures led to a decrease of the moisture in the surface soil.The coupled relationship between soil temperature and moisture was significantly affected by the temperature increase.During the freezing and thawing processes, the soil temperature and moisture under different manipulations fit the regression model given by the equationθV=a/{1+exp[b(TS+c)]}+d.
基金supported by the National Natural Science Foundation of China (Grant no. 41601069) the State Key Program of National Natural Science of China (Grant No. 41730640)the Independent Project of the State Key Laboratory of Frozen Soils Engineering (SKLFSEZT-32 and SKLFSE-ZQ-37)
文摘The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a^(-1) and ~0.003℃ a^(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.
基金supported by the opening fund from the State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(SKLCS 08-07)the National Postdoctoral Scientific Foundation (20080440342)
文摘By using daily air temperature and precipitation data, and the weather phenomena data of daily snowfall from 98 meteorological stations over the Qinghai-Tibetan Plateau (QTP), this paper performs an "at-risk" evaluation on snowfall and accumulated snow over the QTP under current climate situation and future climate warming condition. When rainfall, snowfall, or accumulated snow weather phenomena occur, critical values are determined based on dally air temperature and precipitation for current climate conditions. Air temperature of 0 ℃ is defined as the critical value of temperature for rainfall or snowfall, while 0 ℃ air temperature and 4.0 mm (autumn) or 3.0 mm (spring) snowfall amounts are defined as the critical values for accumulated snowfall. Analyses based on the above critical values disclose that under current climate condition, stations with "at-risk" accumulated snow account for 33% and 36% of all stations, and the "at-risk" snowfall stations reach 78% and 81% in autumn and spring, respectively. Spatially, most stations with "at-risk" accumulated snow are located on the southern and eastern edge of the QTP, and stations with "at-risk" snowfall are also apparent at the northern edge. If the air temperature increases by 2.5 ℃ in 2050, only the snowfall at a few "at-risk" snowfall stations will transform into rainfall, while most "at-risk" accumulated snow stations will face the problem that snowfall is hardly accumulated. Additionally, most stations will become "at-risk" accumulated snow stations, indicating that both the snow depth and the snow cover duration will decline in most areas of the QTP, including a delay of the start date and an advancing of the end date of snow cover.
基金supported by the Science Technology Commission of Zhejiang Province of China(No.2006C22031)
文摘We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to seven notes,the last of which had the longest duration.Three formants(harmonics)were clearly distinguishable from the audio spectrogram.The dominant frequency ranged from 411-1534 Hz,and was either the first or the second formant.The number of notes within a call was positively correlated to air temperature,so that calls contained more notes during the day.Also,the dominant frequency appeared to be lower at the highest temperature.
基金financially supported by the National Natural Science Foundation of China (Grant No.40640420072 and No.40771006)
文摘The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.
基金Under the auspices of the National Natural Science Foundation of China (No. 40401054, No. 40121101), Hundred Talents Program of Chinese Academy of Sciences, President Foundation of Chinese Academy of Sciences, Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-339), National Basic Research Program of China (No. 2005CB422004)
文摘The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Function (EOF) method, to understand the detailed features of its temporal and spatial variations. The results show that there was a high consistency of the monthly mean surface air temperature, with a secondarily different variation between the north and the south of the plateau. Warming trend has existed at all stations since the 1960s, while the warming rates were different in various zones. The source regions of big rivers had intense warming tendency. June, November and December were the top three fast-warming months since the 1960s; while April, July and September presented dramatic warming tendency during the last decade.
基金Project (51134003) supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The oxidation mechanisms of the foams were discussed. The results show that the resistance to the oxidation of the Ni-16Cr-xA1 based alloy at 1 000 ℃ increases with the content of A1 increasing from 4.5% to 9.0%. Complex oxide products are formed on the surface of the superalloy foams after the oxidation. Cr203 and A1203 are the predominant oxides for the scales of the foams with 4.5% A1 and 9% A1, respectively. Excellent high temperature oxidation resistance and superior pore conformation stability for the Ni-16Cr-xA1 based superalloy foam with 9% A1 can be mainly attributed to the formation of relatively continuous and protective A1203 oxides on the surface of the foam.
文摘Taking squid as raw material, the effects of frying temperature and frying time on the quality of squid chips were studied under the conditions of normal pressure frying and high-temperature hot-air frying respectively. And the best processing technology of squid chips was determined. The results showed that crispy squid chips can be obtained by frying the squid after vacuum freeze-drying, and the best processing technology of squid chips is to treat the material by hot air drying at 160℃ for 4 min after pretreatment, seasoning, protease treatment, pre-freezing and freeze-drying. The squid chips made by this technology have a flavor of frying, tightly-shrunken surface tissue, a little browning, less hardness, crispness and no greasy taste.
文摘To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air. The effects of A1203, SiO2, kaolin, dry powder and bentonite on ash fusibility temperatures were studied, based upon the relationship between briquette ash components and ash fusibility. The results show that the increasing of ash fusibility temperatures by adding the same amount (11%, w) of refractory agents follows the sequence of SiO2, bentonite, dry powder, kaolin, A1203, with the softening temperatures being elevated by 37.2, 57.6, 60.4, 82.6 and 104.4℃. With the same ratio of SIO2/A1203 in briquette, adding the A1203 component is more effective than SiO2 for raising ash fusibility temperatures. In this paper, inexpensive kaolin and bentonite rich in A1203 are found to be better refractory agents, and the suitable adding quantities are 9% and 11%, respectively.
基金Supported by the National Natural Science Foundation of China (51176181)the National Basic Research Program of China (2012CB719704)
文摘A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.
文摘This study is to understand the impact of operating condition, especially initial operation temperature (Tini) which is set in high temperature range, on the temperature profile of the interface between PEM (polymer electrolyte membrane) and catalyst layer at the cathode (i.e., the reaction surface) in a single PEFC (polymer electrolyte fuel cell). A 1D multi-plate heat transfer model based on the temperature data of separator measured using thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (Treact). This study investigated the effects of flow rate, relative humidity and type of supply gas as well as Tini on the temperature distribution on reaction surface. The results obtained in 02 supply case show that, the temperature rise at the segments near the outlet of cell decreases with increasing Tini irrespective of relative humidity of supply gas (RH), while it is not seen in air supply case. Regarding the segments except near the outlet in 02 supply case, Treact - Tini increases with increasing Tini for 40% RH. The temperature distribution on reaction surface in 02 supply case is wider with increasing Tini as well as decreasing RH, though that in air supply case is relatively even.