We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new ...We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.展开更多
基金National Natural Science Foundation of China under Grant No.10675065
文摘We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.