In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the met...In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.展开更多
Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal v...Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.展开更多
The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level t...The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level trend maps the geographical variability. In the Northern Hemisphere (15°-64°N), the sea level rise is very fast at the mid-latitude (20°-40°N) but much slower at the high-latitude, for example, only 0.5 mm a^-1 in the latitude band 40°-50°N. In the Southern Hemisphere, the sea level shows high rising rate both in mid-latitude and high-latitude areas, for example, 5.1 mm a^-1 in the band 40°- 50°S. The global thermosteric sea level (TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a^-1 and accounted for more than 40% of the global T/P sea level rise. The contributions of the TSL distribution are not spatially uniform; for instance, the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere (15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean, which contributes more than 60% of the global TSL. The sea level change trend in tropical ocean is mainly caused by the thermosteric effect, which is different from the case of seasonal variability in this area. The TSL variability dominates the T/P sea level rise in the North Atlantic, but it is small in other areas, and shows negative trend at the high-latitude area (40°-60°N, and 50°-60°S). The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-l and striking inter-annual and decadal variability with period of 20 years. In the past 60 years, the Atlantic TSL was rising continuously and remarkably, contributing 38% to the global TSL rising. The TSL in the Pacific and Indian Ocean rose with significant in- ter-annual and decadal variability. The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend. Among the three oceans, the first mode of the Pacific TSL presented the ENSO mode; there was relatively steady rising trend in the Atlantic Ocean, and no dominant mode in the Indian Ocean.展开更多
Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud...Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.展开更多
In order to investigate the global distributions of temporal variations of OH and O2 nightglow emissions,we statistically analyzed their variations with altitude,local time,and season,using the OH and O2 airglow emiss...In order to investigate the global distributions of temporal variations of OH and O2 nightglow emissions,we statistically analyzed their variations with altitude,local time,and season,using the OH and O2 airglow emission rate data observed by the TIMED satellite between 2002 and 2009.The results indicated that the OH nightglow emission was stronger than dayglow emission and the O2 nightglow emission was weaker than dayglow emission.In the tropics,the OH nightglow intensity reached its maximum near midnight;at higher latitudes,the OH nightglow intensities after sunset and before sunrise were much strong.At the equinoxes,the O2 nightglow intensity in the tropics decreased with local time;at the solstices,the local time-latitude distribution of the O2 nightglow intensity had a valley(with weak emission).As for the altitude-latitude distributions of nightglow emission rates,the distribution for OH nightglow at the equinoxes had one peak(with strong emission)at the equator,with a peak height around 85 km;the peak for the March equinox was stronger than that for the September equinox.The distribution for O2 nightglow at the equinoxes had three peaks,lying at 30°in the spring and autumn hemispheres and at the equator,and the peak height at the equator was the lowest.The distributions for both OH and O2 nightglow emissions at the solstices had three peaks.Both nightglow intensities in the tropics had obvious annual and semi-annual variations,the peaks and valleys for semi-annual variations appeared near the equinoxes and solstices,respectively,and the peak at the March equinox was larger than that at the September equinox.The distributions of both OH and O2 nightglow intensities showed a hemispheric asymmetry.展开更多
The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat e...The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.41305086 and 41275049)supported by China postdoctoral funding under the grant 2012M511545supported by U.S. National Science Foundation’s Independent Research and Development fund
文摘In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.
基金supported by the Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05110201)the National Basic Research Program of China (Grant No. 2010CB951901)
文摘Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.
基金supported by the National Basic Research Program of China (No 2007CB411807)the NSFC project (Nos 40976006 and 40906002)+1 种基金the National Key Technology R&D Program (No 2007BAC03A06-06)the project of Key Laboratory of Coastal Disasters and Defence (No 200802)
文摘The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level trend maps the geographical variability. In the Northern Hemisphere (15°-64°N), the sea level rise is very fast at the mid-latitude (20°-40°N) but much slower at the high-latitude, for example, only 0.5 mm a^-1 in the latitude band 40°-50°N. In the Southern Hemisphere, the sea level shows high rising rate both in mid-latitude and high-latitude areas, for example, 5.1 mm a^-1 in the band 40°- 50°S. The global thermosteric sea level (TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a^-1 and accounted for more than 40% of the global T/P sea level rise. The contributions of the TSL distribution are not spatially uniform; for instance, the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere (15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean, which contributes more than 60% of the global TSL. The sea level change trend in tropical ocean is mainly caused by the thermosteric effect, which is different from the case of seasonal variability in this area. The TSL variability dominates the T/P sea level rise in the North Atlantic, but it is small in other areas, and shows negative trend at the high-latitude area (40°-60°N, and 50°-60°S). The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-l and striking inter-annual and decadal variability with period of 20 years. In the past 60 years, the Atlantic TSL was rising continuously and remarkably, contributing 38% to the global TSL rising. The TSL in the Pacific and Indian Ocean rose with significant in- ter-annual and decadal variability. The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend. Among the three oceans, the first mode of the Pacific TSL presented the ENSO mode; there was relatively steady rising trend in the Atlantic Ocean, and no dominant mode in the Indian Ocean.
基金supported by the National Natural Science Foundation of China(Grant No.41125017)the National Basic Research Program of China(Grant No.2010CB951904)
文摘Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.
基金supported by the National Natural Science Foundation of China(Grant Nos.40874080,40890165,40911120063,41004062)the National Basic Research Program of China("973"Project)(Grant No.2006CB806306)+1 种基金China Postdoctoral Science Foundation Funded Project(Grnat No.20100481450)the Specialized Research Fund for State Key Laboratories
文摘In order to investigate the global distributions of temporal variations of OH and O2 nightglow emissions,we statistically analyzed their variations with altitude,local time,and season,using the OH and O2 airglow emission rate data observed by the TIMED satellite between 2002 and 2009.The results indicated that the OH nightglow emission was stronger than dayglow emission and the O2 nightglow emission was weaker than dayglow emission.In the tropics,the OH nightglow intensity reached its maximum near midnight;at higher latitudes,the OH nightglow intensities after sunset and before sunrise were much strong.At the equinoxes,the O2 nightglow intensity in the tropics decreased with local time;at the solstices,the local time-latitude distribution of the O2 nightglow intensity had a valley(with weak emission).As for the altitude-latitude distributions of nightglow emission rates,the distribution for OH nightglow at the equinoxes had one peak(with strong emission)at the equator,with a peak height around 85 km;the peak for the March equinox was stronger than that for the September equinox.The distribution for O2 nightglow at the equinoxes had three peaks,lying at 30°in the spring and autumn hemispheres and at the equator,and the peak height at the equator was the lowest.The distributions for both OH and O2 nightglow emissions at the solstices had three peaks.Both nightglow intensities in the tropics had obvious annual and semi-annual variations,the peaks and valleys for semi-annual variations appeared near the equinoxes and solstices,respectively,and the peak at the March equinox was larger than that at the September equinox.The distributions of both OH and O2 nightglow intensities showed a hemispheric asymmetry.
基金supported by National Basic Research Program of China(Grant No.2012CB957802)the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(Grant No.CHINARE2012-04-04)+1 种基金Program of International Science and Technology Cooperation(Grant No.S2011GR0348)National Natural Science Foundation of China(Grant No.41176029)
文摘The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.