The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was diss...The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.展开更多
Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source...Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source of strength 300 mCi. Background radiation and multiple scattering effects were minimized by properly shielding the detector. The elemental foils of uniform thickness and 99.9% purity were used in the present investigation. The fluorescent spectra were recorded in a 16 K multichannel - analyzer. The data were carefully analyzed and average L-shell fluorescence yields were calculated. The resulting yield values are compared with the available experimental and theoretical values.展开更多
基金Project(21075138) supported by the National Natural Science Foundation of ChinaProject(cstc2011jjA0780) supported by Natural Science Foundation of Chongqing City,ChinaProject(KJ121311) supported by Educational Commission of Chongqing City of China
文摘The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.
文摘Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source of strength 300 mCi. Background radiation and multiple scattering effects were minimized by properly shielding the detector. The elemental foils of uniform thickness and 99.9% purity were used in the present investigation. The fluorescent spectra were recorded in a 16 K multichannel - analyzer. The data were carefully analyzed and average L-shell fluorescence yields were calculated. The resulting yield values are compared with the available experimental and theoretical values.