期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高维微分方程周期解的研究
1
作者 张蕾 《陕西科技大学学报(自然科学版)》 1997年第4期101-104,共4页
简要概述了空间周期解研究的生产、发展和现状,论述了各个时期有代表性的学术成果,指出了应用计算机科学的思路、方法、学术成果研究空间周期解是一条正确的研究路线.
关键词 高维微分方程 空间周期解 存在性 唯一性
下载PDF
非Lipschitz条件下高维McKean-Vlasov随机微分方程解的存在唯一性
2
作者 马丽 孙芳芳 《应用数学和力学》 CSCD 北大核心 2023年第10期1272-1290,共19页
研究了一类漂移系数不连续的高维McKean-Vlasov随机微分方程及相应的粒子系统解的存在唯一性.在漂移系数关于空间变量逐段Lipschitz连续的条件下,首先利用Zvonkin变换将方程转换为漂移系数为Lipschitz连续的McKean-Vlasov随机微分方程,... 研究了一类漂移系数不连续的高维McKean-Vlasov随机微分方程及相应的粒子系统解的存在唯一性.在漂移系数关于空间变量逐段Lipschitz连续的条件下,首先利用Zvonkin变换将方程转换为漂移系数为Lipschitz连续的McKean-Vlasov随机微分方程,变换后的方程存在唯一解.然后由变换函数的性质可得逆函数的存在性和Lipschitz连续性.最后由Ito公式及逆函数的性质可得原来的McKean-Vlasov随机微分方程及相应的粒子系统解的存在唯一性. 展开更多
关键词 高维McKean-Vlasov随机微分方程 粒子系统 逐段Lipschitz连续 Zvonkin变换 解的存在唯一性
下载PDF
(3+1)维短波方程的不变子空间和精确解
3
作者 殷京津 王丽真 《纯粹数学与应用数学》 2015年第4期403-413,共11页
利用不变子空间方法研究了(3+1)维短波方程的不变子空间和精确解.在(2+1)维短波方程增加一维的情形下,构造了更加广泛的精确解,同时也得到了超曲面的爆破解.主要结果不仅推广了不变子空间理论在高维非线性偏微分方程中的应用,而且对研... 利用不变子空间方法研究了(3+1)维短波方程的不变子空间和精确解.在(2+1)维短波方程增加一维的情形下,构造了更加广泛的精确解,同时也得到了超曲面的爆破解.主要结果不仅推广了不变子空间理论在高维非线性偏微分方程中的应用,而且对研究高维方程的动力系统有重要意义. 展开更多
关键词 不变子空间 短波方程 精确解 高维非线性偏微分方程
下载PDF
New Families of Nontravelling Wave Solutions to Two (3+1)-Dimensional Equations
4
作者 BAICheng-Lin LIUXi-Qiang ZHAOHong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期417-422,共6页
In this paper, two (3+1)-dimensional equations are investigated.Auto-Baecklund transformation is obtained, which is used with some ansatze to seek new types ofexact solutions including some arbitrary functions. When t... In this paper, two (3+1)-dimensional equations are investigated.Auto-Baecklund transformation is obtained, which is used with some ansatze to seek new types ofexact solutions including some arbitrary functions. When these arbitrary functions are taken assome special functions, these solutions possess abundant structures. These solutions containsoliton-like solutions and rational solutions. 展开更多
关键词 (3+1)-dimensional equations soliton-like solutions rational solutions
下载PDF
An extended high-dimensional Melnikov analysis for global and chaotic dynamics of a non-autonomous rectangular buckled thin plate 被引量:1
5
作者 ZHANG JunHua ZHANG Wei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第9期1679-1690,共12页
By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectan... By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectangular buckled thin plate.The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation.The two cases of the buckling for the rectangular thin plate are considered.With the aid of Galerkin's approach,a two-degree-of-freedom nonautonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate.The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate.Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate.The results obtained here indicate that the chaotic motions can occur in the parametrically excited,simply supported rectangular buckled thin plate. 展开更多
关键词 extended high-dimensional Melnikov method rectangular buckled thin plate non-autonomous nonlinear system chaotic motions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部