基于粒计算视角,提出粒化-融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选...基于粒计算视角,提出粒化-融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选择结果按权重融合、排序,得到原始数据集的有序特征选择结果.人工数据集和真实数据集上的实验表明文中算法对海量高维数据集进行特征选择的可行性和有效性.展开更多
The practical application of 3D inversion of gravity data requires a lot of computation time and storage space.To solve this problem,we present an integrated optimization algorithm with the following components:(1)tar...The practical application of 3D inversion of gravity data requires a lot of computation time and storage space.To solve this problem,we present an integrated optimization algorithm with the following components:(1)targeting high accuracy in the space domain and fast computation in the wavenumber domain,we design a fast 3D forward algorithm with high precision;and(2)taking advantage of the symmetry of the inversion matrix,the main calculation in gravity conjugate gradient inversion is decomposed into two forward calculations,thus optimizing the computational efficiency of 3D gravity inversion.We verify the calculation accuracy and efficiency of the optimization algorithm by testing various grid-number models through numerical simulation experiments.展开更多
文摘基于粒计算视角,提出粒化-融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选择结果按权重融合、排序,得到原始数据集的有序特征选择结果.人工数据集和真实数据集上的实验表明文中算法对海量高维数据集进行特征选择的可行性和有效性.
基金Financial support by the China Geological Survey Project(Nos.DD20190030,DD20190032)
文摘The practical application of 3D inversion of gravity data requires a lot of computation time and storage space.To solve this problem,we present an integrated optimization algorithm with the following components:(1)targeting high accuracy in the space domain and fast computation in the wavenumber domain,we design a fast 3D forward algorithm with high precision;and(2)taking advantage of the symmetry of the inversion matrix,the main calculation in gravity conjugate gradient inversion is decomposed into two forward calculations,thus optimizing the computational efficiency of 3D gravity inversion.We verify the calculation accuracy and efficiency of the optimization algorithm by testing various grid-number models through numerical simulation experiments.