期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向高维图像特征匹配的多次随机子向量量化哈希算法 被引量:9
1
作者 杨恒 王庆 何周灿 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第3期494-502,510,共10页
为了解决高维图像特征的高效匹配问题,提出一种新的基于多次随机子向量量化哈希(MRSVQH)的索引算法.该算法根据随机选择的若干子向量的L2范数对特征向量进行量化,并根据量化值对特征向量进行散列,构建出哈希索引结构;为了提高搜索精度,... 为了解决高维图像特征的高效匹配问题,提出一种新的基于多次随机子向量量化哈希(MRSVQH)的索引算法.该算法根据随机选择的若干子向量的L2范数对特征向量进行量化,并根据量化值对特征向量进行散列,构建出哈希索引结构;为了提高搜索精度,类似的哈希索引结构被多次构建.搜索时仅考察与查询向量有相同哈希值的特征向量集合,缩减了搜索范围.实验数据表明,与经典的BBF和LSH算法相比,MRSVQH算法在图像特征的最近邻搜索精度和搜索速度方面都有较大的性能提升,在图像匹配和图像检索的应用中具有优势. 展开更多
关键词 高维特征匹配 最近邻搜索 图像匹配 图像检索 多次随机子向量量化哈希
下载PDF
基于子向量距离索引的高维图像特征匹配算法 被引量:2
2
作者 赵嵩 马荣华 +1 位作者 曹海旺 杨恒 《计算机工程与应用》 CSCD 2013年第2期237-241,264,共6页
图像局部不变特征已经成功地应用在计算机视觉当中的许多领域,而如何快速有效地匹配高维图像局部特征向量是解决这类问题的关键步骤。提出了一种新的基于子向量距离索引的高维特征向量匹配算法,将高维空间中最近邻搜索问题转化为一维索... 图像局部不变特征已经成功地应用在计算机视觉当中的许多领域,而如何快速有效地匹配高维图像局部特征向量是解决这类问题的关键步骤。提出了一种新的基于子向量距离索引的高维特征向量匹配算法,将高维空间中最近邻搜索问题转化为一维索引值的查找和局部搜索问题,在保证较高的搜索精度的同时大大提高了搜索速度。大量的图像匹配和图像检索实验验证了该算法的有效性。 展开更多
关键词 高维特征匹配 最近邻搜索 图像检索 子向量距离索引
下载PDF
Real-time road traffic states estimation based on kernel-KNN matching of road traffic spatial characteristics 被引量:2
3
作者 XU Dong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2453-2464,共12页
The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact... The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy. 展开更多
关键词 road traffic kernel function k nearest neighbor (KNN) state estimation spatial characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部