期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
自适应加权t-SNE算法及其在脑网络状态观测矩阵降维中的应用研究
被引量:
6
1
作者
詹威威
王彬
+2 位作者
薛洁
熊新
王瑞
《计算机应用研究》
CSCD
北大核心
2018年第7期2055-2058,2070,共5页
针对目前数据降维算法受高维空间样本分布影响效果不佳的问题,提出了一种自适应加权的t分布随机近邻嵌入(t-SNE)算法。该算法对两样本点在高维空间中的欧氏距离进行归一化后按距离的不同分布状况进行分组分析,分别按照近距离、较近距离...
针对目前数据降维算法受高维空间样本分布影响效果不佳的问题,提出了一种自适应加权的t分布随机近邻嵌入(t-SNE)算法。该算法对两样本点在高维空间中的欧氏距离进行归一化后按距离的不同分布状况进行分组分析,分别按照近距离、较近距离和远距离三种情况在计算高维空间内样本点间的相似概率时进行自适应加权处理,以加权相对距离代替欧氏绝对距离,从而更真实地度量每一组不同样本在高维空间的相似程度。在高维脑网络状态观测矩阵中的降维实验结果表明,自适应加权t-SNE的降维聚类可视化效果优于其他降维算法,与传统t-SNE算法相比,聚类指标值DBI值平均降低了28.39%,DI值平均提高了161.84%,并且有效地消除了分散、交叉和散点等问题。
展开更多
关键词
高维降维算法
t-SNE
自适应加权
脑状态观测矩阵
静息态f
MRI
下载PDF
职称材料
题名
自适应加权t-SNE算法及其在脑网络状态观测矩阵降维中的应用研究
被引量:
6
1
作者
詹威威
王彬
薛洁
熊新
王瑞
机构
昆明理工大学信息工程与自动化学院
云南警官学院信息网络安全学院
昆明理工大学津桥学院
出处
《计算机应用研究》
CSCD
北大核心
2018年第7期2055-2058,2070,共5页
基金
国家自然科学基金资助项目(61263017)
文摘
针对目前数据降维算法受高维空间样本分布影响效果不佳的问题,提出了一种自适应加权的t分布随机近邻嵌入(t-SNE)算法。该算法对两样本点在高维空间中的欧氏距离进行归一化后按距离的不同分布状况进行分组分析,分别按照近距离、较近距离和远距离三种情况在计算高维空间内样本点间的相似概率时进行自适应加权处理,以加权相对距离代替欧氏绝对距离,从而更真实地度量每一组不同样本在高维空间的相似程度。在高维脑网络状态观测矩阵中的降维实验结果表明,自适应加权t-SNE的降维聚类可视化效果优于其他降维算法,与传统t-SNE算法相比,聚类指标值DBI值平均降低了28.39%,DI值平均提高了161.84%,并且有效地消除了分散、交叉和散点等问题。
关键词
高维降维算法
t-SNE
自适应加权
脑状态观测矩阵
静息态f
MRI
Keywords
high dimension reduction
t-SNE
adaptive weighting
human brain state observation matrix
resting state fMRI
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
自适应加权t-SNE算法及其在脑网络状态观测矩阵降维中的应用研究
詹威威
王彬
薛洁
熊新
王瑞
《计算机应用研究》
CSCD
北大核心
2018
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部