期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
半刚性高分子链塌缩相变的蒙特卡洛模拟
1
作者 谢元南 黄昀 《高分子学报》 SCIE CAS CSCD 北大核心 1993年第3期322-329,共8页
本文主要研究半刚性高分子链在不同温度下的形态变化,特别是在低温下的塌缩相变。我们对半刚性高分子链在三维简立方点阵上进行蒙特卡洛数值模拟。计算模型中考虑了链段间的排斥势、近邻间的吸引势和局域刚性势。链的刚性程度由刚性势... 本文主要研究半刚性高分子链在不同温度下的形态变化,特别是在低温下的塌缩相变。我们对半刚性高分子链在三维简立方点阵上进行蒙特卡洛数值模拟。计算模型中考虑了链段间的排斥势、近邻间的吸引势和局域刚性势。链的刚性程度由刚性势与吸引势的比值确定。计算证明在温度逐步下降时,柔性链的形态由高温下的无规线团逐渐收缩为低温下的无规紧缩线团;但刚性程度较高的链则首先扩展,然后再收缩为具有一定有序度的紧缩态。同时我们也证明半刚性高分子链的塌缩相变是与柔性链的形态转变相同,它们的热力学行为都符合二级相变的特征。 展开更多
关键词 塌缩相变 蒙特卡洛模拟 高聚物链
下载PDF
无抚Polyoxymethylene链体系的热力学性质
2
作者 许健民 宋栩冰 +1 位作者 周志平 方裘 《杭州大学学报(自然科学版)》 CSCD 1989年第1期111-112,共2页
旋转异构态模型的三重态理论认为,高聚物链上每个键的旋转角可取三种分列的值,分别对应于旋转态。它们是:反式(t),左旁式(g^+)和右旁式(g^-)。线型高聚物的构象态用组成链的一系列键的旋转态来表示。例如:tg^+g^+ttg^-t…… 一条由n个... 旋转异构态模型的三重态理论认为,高聚物链上每个键的旋转角可取三种分列的值,分别对应于旋转态。它们是:反式(t),左旁式(g^+)和右旁式(g^-)。线型高聚物的构象态用组成链的一系列键的旋转态来表示。例如:tg^+g^+ttg^-t…… 一条由n个键组成的线型链,由于每个键有三种旋转角,故它可以有3^(n-2)个不同的构象(两个端键的旋转不影响构象态)。本文旨在研究这样一个系综里平衡态下Polyoxymethylene(POM)的热力学性质。 POM链结构显示在图1.它的主链上是CH_2和O的交替有序排列。C—O键长是1.43A,C—O—C和O—C—O角近似为四面体(110±2°)角。旋转角φ_i=0°,φ_g~±=±120°。 展开更多
关键词 聚甲醛 高聚物链 热力学 构象
下载PDF
柔性链聚合物制取超高强高模纤维的研究进展 被引量:7
3
作者 刘红阳 赵耀明 《合成纤维工业》 CAS CSCD 1999年第6期43-46,共4页
论述了用超高相对分子质量柔性链聚合物制取超高强高模纤维的研究开发状况,凝胶纺丝技术的基本原理和工艺特征,所制得的具有高强度。
关键词 凝胶纺丝 高模量 高强度 特种纤维 柔性高聚物
下载PDF
分子复合材料的研究进展 被引量:7
4
作者 袁莉 马晓燕 +1 位作者 梁国正 王娟娟 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2004年第5期41-45,共5页
分子复合材料是指刚性高分子链(段)聚合物与柔性链聚合物(树脂)共混,刚性链高分子聚合物作为增强相在接近分子水平上均匀分散在柔性链(段)树脂基体中,达到最佳分子增强效应,形成高强度、高模量的复合材料。制备分子复合材料的关键在于... 分子复合材料是指刚性高分子链(段)聚合物与柔性链聚合物(树脂)共混,刚性链高分子聚合物作为增强相在接近分子水平上均匀分散在柔性链(段)树脂基体中,达到最佳分子增强效应,形成高强度、高模量的复合材料。制备分子复合材料的关键在于溶混性。文中重点讨论了分子复合材料的制备方法与改进方法,简要介绍了分子复合材料的分类、特点及组成。 展开更多
关键词 分子复合材料 刚棒状聚合物 柔性高聚物 力学性能 增强相 树脂基体 溶液共混共沉淀法 制备 熔融共混法 原位聚合法 接枝共聚法 丁二炔 聚异氰酸酯 离子改性聚合物 纤维素
下载PDF
新型包装材料——POF C3热收缩膜 被引量:5
5
作者 李卫东 《中国包装》 2003年第3期106-106,共1页
热收缩膜采用高聚物分子链拉伸定向原理设计,以急冷定型的方法成型。其物理原理是:当高聚物处于高弹态时,对其拉伸取向,然后将高聚物骤冷至玻璃化温度以下,分子取向被冻结,当对物品进行包装过程中对其加热时,由于分子热运动产生应力松弛... 热收缩膜采用高聚物分子链拉伸定向原理设计,以急冷定型的方法成型。其物理原理是:当高聚物处于高弹态时,对其拉伸取向,然后将高聚物骤冷至玻璃化温度以下,分子取向被冻结,当对物品进行包装过程中对其加热时,由于分子热运动产生应力松弛,分子恢复原来的状态,产生收缩。 展开更多
关键词 包装材料 热收缩膜 POF-C3 高聚物分子拉伸定向原理
下载PDF
Translocation of Polymer Through a Nanopore Studied by Langevin Dynamics:Effect of the Friction Coefficient
6
作者 冯剑 尚亚卓 +2 位作者 周丽绘 刘洪来 胡英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期231-238,共8页
The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time ... The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation. 展开更多
关键词 TRANSLOCATION Langevin dynamics friction coefficient POLYMER NANOPORE
下载PDF
Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel cell applications 被引量:4
7
作者 Junming Dai Yu Zhang +1 位作者 Gang Wang Yongbing Zhuang 《Science China Materials》 SCIE EI CAS CSCD 2022年第2期273-297,共25页
High-temperature proton exchange membrane(HT-PEM)fuel cells offer more advantages than low-temperature PEM fuel cells.The ideal characteristics of HT-PEMs are high conductivities,low-humidity operation conditions,adeq... High-temperature proton exchange membrane(HT-PEM)fuel cells offer more advantages than low-temperature PEM fuel cells.The ideal characteristics of HT-PEMs are high conductivities,low-humidity operation conditions,adequate mechanical properties,and competitive costs.Various molecular moieties,such as benzimidazole,benzothiazole,imide,and ether ether ketone,have been introduced to polymer chain backbones to satisfy the application requirements for HT-PEMs.The most common sulfonated polymers based on the main chain backbones have been employed to improve the rties.Side group/chain engineering,including the introduction of SO_(3)^(-) on the side chain,grafting,branching,and crosslinking,has been widely applied to HTPEMs to further improve their proton conductivity,thermal stability,and mechanical properties.Currently,phosphoric acid-doped polybenzimidazole is the most successful polymer material for application in HT-PEMs.The compositing/blending modification methods of polymers are effective in obtaining high PA-doping levels and superior mechanical properties.In this review,the current progress of various membrane materials used for HT-PEMs is summarized.The synthesis and performance characteristics of polymers containing specific moieties in the chain backbones applied to HT-PEMs are discussed systemically.Various modification approaches and their deficiencies associated with HT-PEMs are analyzed and clarified.Prospects and future challenges are also presented. 展开更多
关键词 proton exchange membranes high-temperature fuel cells structure-performance relationship proton conductivity
原文传递
Application of named reactions in polymer synthesis
8
作者 Xue Jiang Chun Feng +1 位作者 Guolin Lu Xiaoyu Huang 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第11期1695-1709,共15页
In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of mo... In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of monomer selection, solvent environment, reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions, and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactions in polymer synthesis. 展开更多
关键词 named reaction polymer synthesis cross-coupling reaction multicomponent reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部