The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.T...The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.The effect of dissolved gas,xanthate addition and agitation speed on fine sphalerite particle aggregation-and flotation-behavior were studied.The results show that during HIC in air or CO2 saturated water xanthate acts as a frother.The dissolved gas content in the pulp and HIC play a synergistic role in promoting fine particle aggregation and hence flotation;a significantly enhanced aggregation of fine sphalerite particles in a CO2 saturated slurry by HIC is observed.The aggregate size increased when the agitation speed was increased from 700 r/min to 1500 r/min.Increasing the HIC speed to 1500 r/min caused a positive impact on flotation kinetics.Further increasing the speed to 2000 r/min resulted in an adverse effect on flotation kinetics.展开更多
基金Project 50674103 supported by the National Natural Science Foundation of China
文摘The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.The effect of dissolved gas,xanthate addition and agitation speed on fine sphalerite particle aggregation-and flotation-behavior were studied.The results show that during HIC in air or CO2 saturated water xanthate acts as a frother.The dissolved gas content in the pulp and HIC play a synergistic role in promoting fine particle aggregation and hence flotation;a significantly enhanced aggregation of fine sphalerite particles in a CO2 saturated slurry by HIC is observed.The aggregate size increased when the agitation speed was increased from 700 r/min to 1500 r/min.Increasing the HIC speed to 1500 r/min caused a positive impact on flotation kinetics.Further increasing the speed to 2000 r/min resulted in an adverse effect on flotation kinetics.