由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本...由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本文将评述河外极高能宇宙线起源的候选天体,包括伽玛射线暴,活动星系核,巨超新星等.同时我们从多信使角度(包括高能中微子,伽玛光子的观测),探讨这些天体是河外极高能宇宙线起源天体的可能性.展开更多
TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of S...TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.展开更多
The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger s...The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger steepening does not agree with GZK cutoff, which is most probably explained by the nuclei mass composition detected by Auger. At present the difference in mass composition in Auger and HiRes/TA data remains the main unsolved problem of UHECR origin.展开更多
文摘由于大型宇宙线探测器Pierre Auger,Telescope Array等的观测,极高能宇宙线(能量大于1018 e V的宇宙线)的研究取得了很大进展,包括探测到高能能谱变陡,与河外天体源的可能相关性,以及化学成分组成等.然而这些宇宙线的起源天体仍未知.本文将评述河外极高能宇宙线起源的候选天体,包括伽玛射线暴,活动星系核,巨超新星等.同时我们从多信使角度(包括高能中微子,伽玛光子的观测),探讨这些天体是河外极高能宇宙线起源天体的可能性.
文摘TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.
文摘The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger steepening does not agree with GZK cutoff, which is most probably explained by the nuclei mass composition detected by Auger. At present the difference in mass composition in Auger and HiRes/TA data remains the main unsolved problem of UHECR origin.