AIM: To analyze the microbiota shift in the dista esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. ...AIM: To analyze the microbiota shift in the dista esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on se- lective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 165 rDNA was amplified by PCR using bacterial uni- versal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS: Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were de- creased significantly in the high-fat diet group compared with the normal control group (P 〈 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispa- tus, Lactobacillus gasseri (L. gasser/] and Lactobacillus reuteri (L. reuterl] comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION: High-fat diet led to a mucosal micro- flora shift in the distal esophagus in rats, especially the composition of Lactobacillus species.展开更多
The fat nano-emulsion, which has been used as a drug carrier, especially for the poorly water soluble drug, has drawn favorable attention recently. Ubenimex is a poorly soluble drug with no parenteral treatment availa...The fat nano-emulsion, which has been used as a drug carrier, especially for the poorly water soluble drug, has drawn favorable attention recently. Ubenimex is a poorly soluble drug with no parenteral treatment available for patients. This study was aimed at the manufacture of a ubenimex loaded fat nano-emulsion for intravenous delivery by SolEmuls~ technology. The formulation and the process parameters were optimized by single-factor design and the obtained ubenimex loaded fat nano-emulsion was stable even after autoclaving. The average particle size was near 200 nm with narrow size distribution and a negative zeta potential of -44 mV. The in vitro release behavior of ubenimex from the fat nano-emulsion could be described by the double phase kinetics model and expressed by the following equation: 100 - Q = 75.27e^-0.369t + 15.94e^-0.0324t, Rα = 0.9863, Rβ = 0.9878. The pharmacokinetic study showed that the pharmacokinetic curves of both the ubenimex fat nano-emulsion and the i.v. ubenimex suspension, were similar and the main parameters showed no significant difference except t1/2. In conclusion, the fat nano-emulsion with ubenimex has potential as a safe and effective parenteral delivery system for poorly water soluble anti-cancer drugs.展开更多
文摘AIM: To analyze the microbiota shift in the dista esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on se- lective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 165 rDNA was amplified by PCR using bacterial uni- versal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS: Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were de- creased significantly in the high-fat diet group compared with the normal control group (P 〈 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispa- tus, Lactobacillus gasseri (L. gasser/] and Lactobacillus reuteri (L. reuterl] comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION: High-fat diet led to a mucosal micro- flora shift in the distal esophagus in rats, especially the composition of Lactobacillus species.
基金Shandong Province Natural Science Foundation (Grant No.ZR2009CM011)
文摘The fat nano-emulsion, which has been used as a drug carrier, especially for the poorly water soluble drug, has drawn favorable attention recently. Ubenimex is a poorly soluble drug with no parenteral treatment available for patients. This study was aimed at the manufacture of a ubenimex loaded fat nano-emulsion for intravenous delivery by SolEmuls~ technology. The formulation and the process parameters were optimized by single-factor design and the obtained ubenimex loaded fat nano-emulsion was stable even after autoclaving. The average particle size was near 200 nm with narrow size distribution and a negative zeta potential of -44 mV. The in vitro release behavior of ubenimex from the fat nano-emulsion could be described by the double phase kinetics model and expressed by the following equation: 100 - Q = 75.27e^-0.369t + 15.94e^-0.0324t, Rα = 0.9863, Rβ = 0.9878. The pharmacokinetic study showed that the pharmacokinetic curves of both the ubenimex fat nano-emulsion and the i.v. ubenimex suspension, were similar and the main parameters showed no significant difference except t1/2. In conclusion, the fat nano-emulsion with ubenimex has potential as a safe and effective parenteral delivery system for poorly water soluble anti-cancer drugs.