Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri ...Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri University of Science and Technology, we are developing methods for measuring joint orientations remotely and quantifying the raveling process. Measuring joint orientations remotely along highways is safer, more accurate and can result in larger and more accurate data sets, including measurements from otherwise inaccessible areas. Measuring the nature of rock raveling will provide the data needed to begin the process of modeling the rock raveling process. In both cases, terrestrial lidar scanning is used to generate large point clouds of coordinate triplets representing the surface of the rock cut. Automated algorithms have been developed to organize the lidar data, register successive images without survey control, and removal of vegetation and non-rock artifacts. In the first case, we look for planar elements, identify the plane and calculate the orientations. In the second case, we take a series of scans over time and use sophisticated change detection algorithms to calculate the numbers and volumes of rock that has fallen off the rock face.展开更多
Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to esti...Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.展开更多
Micro RNAs(mi RNAs) have been shown to play critical regulatory roles in gene expression in cotton. Although a large number of mi RNAs have been identified in cotton fibers, the functions of mi RNAs in seed developmen...Micro RNAs(mi RNAs) have been shown to play critical regulatory roles in gene expression in cotton. Although a large number of mi RNAs have been identified in cotton fibers, the functions of mi RNAs in seed development remain unexplored. In this study, a small RNA library was constructed from cotton seeds sampled at 15 days post-anthesis(DPA) and was subjected to high-throughput sequencing. A total of 95 known mi RNAs were detected to be expressed in cotton seeds. The expression pattern of these identified mi RNAs was profiled and 48 known mi RNAs were differentially expressed between cotton seeds and fibers at 15 DPA. In addition, 23 novel mi RNA candidates were identified in 15-DPA seeds. Putative targets for 21 novel and 87 known mi RNAs were successfully predicted and 900 expressed sequence tag(EST) sequences were proposed to be candidate target genes, which are involved in various metabolic and biological processes, suggesting a complex regulatory network in developing cotton seeds. Furthermore, mi RNA-mediated cleavage of three important transcripts in vivo was validated by RLM-5′ RACE. This study is the first to show the regulatory network of mi RNAs that are involved in developing cotton seeds and provides a foundation for future studies on the specific functions of these mi RNAs in seed development.展开更多
文摘Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri University of Science and Technology, we are developing methods for measuring joint orientations remotely and quantifying the raveling process. Measuring joint orientations remotely along highways is safer, more accurate and can result in larger and more accurate data sets, including measurements from otherwise inaccessible areas. Measuring the nature of rock raveling will provide the data needed to begin the process of modeling the rock raveling process. In both cases, terrestrial lidar scanning is used to generate large point clouds of coordinate triplets representing the surface of the rock cut. Automated algorithms have been developed to organize the lidar data, register successive images without survey control, and removal of vegetation and non-rock artifacts. In the first case, we look for planar elements, identify the plane and calculate the orientations. In the second case, we take a series of scans over time and use sophisticated change detection algorithms to calculate the numbers and volumes of rock that has fallen off the rock face.
文摘Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.
基金supported by the National Basic Research Program of China(2010CB126003)the National Transgenic Animals and Plants Research Project(2011ZX08005-003,2011ZX08009-003)
文摘Micro RNAs(mi RNAs) have been shown to play critical regulatory roles in gene expression in cotton. Although a large number of mi RNAs have been identified in cotton fibers, the functions of mi RNAs in seed development remain unexplored. In this study, a small RNA library was constructed from cotton seeds sampled at 15 days post-anthesis(DPA) and was subjected to high-throughput sequencing. A total of 95 known mi RNAs were detected to be expressed in cotton seeds. The expression pattern of these identified mi RNAs was profiled and 48 known mi RNAs were differentially expressed between cotton seeds and fibers at 15 DPA. In addition, 23 novel mi RNA candidates were identified in 15-DPA seeds. Putative targets for 21 novel and 87 known mi RNAs were successfully predicted and 900 expressed sequence tag(EST) sequences were proposed to be candidate target genes, which are involved in various metabolic and biological processes, suggesting a complex regulatory network in developing cotton seeds. Furthermore, mi RNA-mediated cleavage of three important transcripts in vivo was validated by RLM-5′ RACE. This study is the first to show the regulatory network of mi RNAs that are involved in developing cotton seeds and provides a foundation for future studies on the specific functions of these mi RNAs in seed development.