At 5 am 24 th June 2017, a catastrophic landslide hit Xinmo Village, Maoxian County, Sichuan Province, China. The slide mass rushed down from an altitude of 3400 m and traveled 2700 m in a high velocity. The 13 millio...At 5 am 24 th June 2017, a catastrophic landslide hit Xinmo Village, Maoxian County, Sichuan Province, China. The slide mass rushed down from an altitude of 3400 m and traveled 2700 m in a high velocity. The 13 million m^3 deposition buried the whole village and caused about 100 deaths. The source area of the landslide is located in a high steep slope, average slope angle is 40o and maximal angle is 65o. The strata are interbedded Triassic Zagunao Formation metamorphic sandstone and slate with the dip slope angle of 45°. Based on high-resolution satellite remote sensing image, UAV image, DEM data, and field investigation, failure mechanism, travel features, and deposit characteristics were analyzed. The results showed that this landslide was influenced by Songpinggou Fault zone. According to the topography before the failure, the landslide is located in the back scarp of an antecedent landslide induced by Diexi Earthquake in 1933. The bedding slope provided potential rupture surface. Historical seismic activities and long-term gravitational deformation caused rock mass accumulated damages. Weathering and precipitation weakened the rock mass and finally induced shearing and tension failure. A huge block detached from the top rock slope, pushed the past landslide deposits in the middle part, rushed out of the slope bottom in a high velocity and buried the Xinmo Village. The rapid movement entrained and brought the soil into the Songping Gully which recoiled with and bounced back from the opposite mountain.展开更多
The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was diss...The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.展开更多
The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger s...The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger steepening does not agree with GZK cutoff, which is most probably explained by the nuclei mass composition detected by Auger. At present the difference in mass composition in Auger and HiRes/TA data remains the main unsolved problem of UHECR origin.展开更多
High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice co...High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.展开更多
基金partially supported by the National Science Foundation of China(Grant No.41572302)the Funds for Creative Research Groups of China(Grant No.41521002)
文摘At 5 am 24 th June 2017, a catastrophic landslide hit Xinmo Village, Maoxian County, Sichuan Province, China. The slide mass rushed down from an altitude of 3400 m and traveled 2700 m in a high velocity. The 13 million m^3 deposition buried the whole village and caused about 100 deaths. The source area of the landslide is located in a high steep slope, average slope angle is 40o and maximal angle is 65o. The strata are interbedded Triassic Zagunao Formation metamorphic sandstone and slate with the dip slope angle of 45°. Based on high-resolution satellite remote sensing image, UAV image, DEM data, and field investigation, failure mechanism, travel features, and deposit characteristics were analyzed. The results showed that this landslide was influenced by Songpinggou Fault zone. According to the topography before the failure, the landslide is located in the back scarp of an antecedent landslide induced by Diexi Earthquake in 1933. The bedding slope provided potential rupture surface. Historical seismic activities and long-term gravitational deformation caused rock mass accumulated damages. Weathering and precipitation weakened the rock mass and finally induced shearing and tension failure. A huge block detached from the top rock slope, pushed the past landslide deposits in the middle part, rushed out of the slope bottom in a high velocity and buried the Xinmo Village. The rapid movement entrained and brought the soil into the Songping Gully which recoiled with and bounced back from the opposite mountain.
基金Project(21075138) supported by the National Natural Science Foundation of ChinaProject(cstc2011jjA0780) supported by Natural Science Foundation of Chongqing City,ChinaProject(KJ121311) supported by Educational Commission of Chongqing City of China
文摘The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.
文摘The observations of Ultra High Energy Cosmic Rays (UHECR) are renewed, focusing on the energy spectra as measured by HiRes, Telescope Array (TA) and Auger detectors (PAO). It is found that highest energy Auger steepening does not agree with GZK cutoff, which is most probably explained by the nuclei mass composition detected by Auger. At present the difference in mass composition in Auger and HiRes/TA data remains the main unsolved problem of UHECR origin.
基金supported by the National Natural Science Foundation of China(Grant No.41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2017)CAS Key Technology Talent Program and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(2017490711)
文摘High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.