A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce tim...A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce time cost,and a combination of the mass flow balance technique and the axisymmetric analog is proposed to account for the entropy swallowing effects.A three-dimensional linear method is derived to fit the vehicle surface flowfields.Then a new axisymmetric analog method based on linear flowfields and linear surface equations is developed,with the complexity and computational cost reduced dramatically.In the stagnation region,an implicit surface fitting is introduced to approximate the primary curvatures and a robust aeroheating prediction method is constructed.The proposed approach is verified on a variety of configurations including spherically blunted cone,double ellipsoid and aerospace vehicle.Numerical results indicate the followings:1)The approach predicts aeroheating in about one second and the results agree well with CFD simulations and wind-tunnel measurements;2)with the help of entropy correction,the precision is further improved in the streamline diverging regions on the vehicle surface,while little improvement is found after entropy correction in the regions where the streamlines do not diverge.展开更多
The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed i...The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream; combustion efficiency has been improved thereby, as well as engine thrust. Research on mixing techniques for the transverse injection flow field is summarized from four aspects, namely the jet-to-crossflow pressure ratio, the geometric configuration of the injection port, the number of injection ports, and the injection angle. In conclusion, urgent investigations of mixing techniques of the transverse injection flow field are pro- posed, especiaUy data mining in the quantitative analytical results for transverse injection flow field, based on results from multi-objective design optimization theory.展开更多
This paper reports the direct numerical simulation (DNS) for hypersonic turbulent boundary layer over a flat-plate at Ma∞ =8 with the ratio of wall-to-freestream temperature equal to 1.9, which indicates an extremely...This paper reports the direct numerical simulation (DNS) for hypersonic turbulent boundary layer over a flat-plate at Ma∞ =8 with the ratio of wall-to-freestream temperature equal to 1.9, which indicates an extremely cold wall condition. It is primarily used to assess the wall temperature effects on the mean velocity profile, Walz equation, turbulent intensity, strong Reynolds analogy (SRA), and compressibility. The present high Mach number with cold wall condition induces strong compressibility effects. As a result, the Morkovin's hypothesis is not fully valid and so the classical SRA is also not fully consistent. However, some modified SRA is still valid at the far-wall region. It is also verified that the semi-local wall coordinate y* is better than conventional y+ in analysis of statistics features in turbulent boundary layer (TBL) in hypersonic flow.展开更多
This paper provides practical data for thermal product values of different scratched temperature sensors that can be used for accurate transient heat transfer measurements under hypersonic flow conditions.The effect o...This paper provides practical data for thermal product values of different scratched temperature sensors that can be used for accurate transient heat transfer measurements under hypersonic flow conditions.The effect of using different scratch techniques(abrasive papers and scalpel blades)to form the sensor's junction is investigated.It was observed that the thermal product of a particular sensor depends on the Mach number,junction scratch technique, junction location and enthalpy conditions.It was demonstrated that using different scratched technique would produce different thermal product values.展开更多
基金supported by the Doctorate Creation Foundation of Northwestern Polytechnical University (Grant No. CX200902)
文摘A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce time cost,and a combination of the mass flow balance technique and the axisymmetric analog is proposed to account for the entropy swallowing effects.A three-dimensional linear method is derived to fit the vehicle surface flowfields.Then a new axisymmetric analog method based on linear flowfields and linear surface equations is developed,with the complexity and computational cost reduced dramatically.In the stagnation region,an implicit surface fitting is introduced to approximate the primary curvatures and a robust aeroheating prediction method is constructed.The proposed approach is verified on a variety of configurations including spherically blunted cone,double ellipsoid and aerospace vehicle.Numerical results indicate the followings:1)The approach predicts aeroheating in about one second and the results agree well with CFD simulations and wind-tunnel measurements;2)with the help of entropy correction,the precision is further improved in the streamline diverging regions on the vehicle surface,while little improvement is found after entropy correction in the regions where the streamlines do not diverge.
基金supported by the Science Foundation of National University of Defense Technology (No. JC11-01-02)the Hunan Provincial Natural Science Foundation of China (No.12jj4047)
文摘The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream; combustion efficiency has been improved thereby, as well as engine thrust. Research on mixing techniques for the transverse injection flow field is summarized from four aspects, namely the jet-to-crossflow pressure ratio, the geometric configuration of the injection port, the number of injection ports, and the injection angle. In conclusion, urgent investigations of mixing techniques of the transverse injection flow field are pro- posed, especiaUy data mining in the quantitative analytical results for transverse injection flow field, based on results from multi-objective design optimization theory.
基金supported by the National Nature Science Foundation of China(Grant No. 11072248)the National Basic Research Program(Grant No. 2009CB724100)+1 种基金the National High-tech R&D Program(No.2012AA01A304)the CAS Information Project(INFO-115-B01)
文摘This paper reports the direct numerical simulation (DNS) for hypersonic turbulent boundary layer over a flat-plate at Ma∞ =8 with the ratio of wall-to-freestream temperature equal to 1.9, which indicates an extremely cold wall condition. It is primarily used to assess the wall temperature effects on the mean velocity profile, Walz equation, turbulent intensity, strong Reynolds analogy (SRA), and compressibility. The present high Mach number with cold wall condition induces strong compressibility effects. As a result, the Morkovin's hypothesis is not fully valid and so the classical SRA is also not fully consistent. However, some modified SRA is still valid at the far-wall region. It is also verified that the semi-local wall coordinate y* is better than conventional y+ in analysis of statistics features in turbulent boundary layer (TBL) in hypersonic flow.
文摘This paper provides practical data for thermal product values of different scratched temperature sensors that can be used for accurate transient heat transfer measurements under hypersonic flow conditions.The effect of using different scratch techniques(abrasive papers and scalpel blades)to form the sensor's junction is investigated.It was observed that the thermal product of a particular sensor depends on the Mach number,junction scratch technique, junction location and enthalpy conditions.It was demonstrated that using different scratched technique would produce different thermal product values.