When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to co...When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.展开更多
Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence model...Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence modeling for su-per/hypersonic flows is an urgent problem. Through analyzing a set of data resulting from DNS and experiments, it is foundthat some most popular models suffer from essential flaws, and can be hardly improved following the traditional mode ofthinking. On the contrary, the BL model, which is one of the simplest and widely-used models, can be further improved. In thispaper, through analyzing results from DNS data, the main cause of the inaccuracy in applying the BL model to supersonic andhypersonic turbulent boundary layers is found to have resulted from the mismatch between the location of the matching pointof the inner and outer layers of the BL model determined by the conventional way and those given by DNS. Improvement onthis point, as well as other improvements is proposed. Its effectiveness is verified through the comparison with DNS results.展开更多
A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical ene...A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.展开更多
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible tur...Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772134 and 11172203)the National Basic Research Program of China (Grant No. 2009CB724103)
文摘When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.
基金supported by the National Basic Research Program of China (Grant No. 2009CB724103)the National Aeronautics Base Science Foundation of China (Grant No. 2010ZA48002)
文摘Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence modeling for su-per/hypersonic flows is an urgent problem. Through analyzing a set of data resulting from DNS and experiments, it is foundthat some most popular models suffer from essential flaws, and can be hardly improved following the traditional mode ofthinking. On the contrary, the BL model, which is one of the simplest and widely-used models, can be further improved. In thispaper, through analyzing results from DNS data, the main cause of the inaccuracy in applying the BL model to supersonic andhypersonic turbulent boundary layers is found to have resulted from the mismatch between the location of the matching pointof the inner and outer layers of the BL model determined by the conventional way and those given by DNS. Improvement onthis point, as well as other improvements is proposed. Its effectiveness is verified through the comparison with DNS results.
基金supported by the National Basic Research Program of China(Grant No.2009CB724104)the Innovation Foundation of BUAA for PhD Graduates and the Academic New Artist Award of BUAA for PhD Graduates
文摘A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.
基金supported by the National Natural Science Foundation of China (Grant No. 11102079)the Aeronautical Science Foundation of China (Grant No. 20111456005)
文摘Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.