高转速比异步变频电机电磁设计,既要满足高速弱磁区转矩不足,又要克服低速时磁路过饱和。以1 600 k W异步变频电机为例分析了等效电路参数变动特点,绘制了高低转速下转矩、效率、电压、电流和功率因数曲线;并得出了磁密、磁导率分布图,...高转速比异步变频电机电磁设计,既要满足高速弱磁区转矩不足,又要克服低速时磁路过饱和。以1 600 k W异步变频电机为例分析了等效电路参数变动特点,绘制了高低转速下转矩、效率、电压、电流和功率因数曲线;并得出了磁密、磁导率分布图,计算了不同工况下损耗的时间分布图。经电机型式试验测试,设计方案满足技术要求。展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
文摘高转速比异步变频电机电磁设计,既要满足高速弱磁区转矩不足,又要克服低速时磁路过饱和。以1 600 k W异步变频电机为例分析了等效电路参数变动特点,绘制了高低转速下转矩、效率、电压、电流和功率因数曲线;并得出了磁密、磁导率分布图,计算了不同工况下损耗的时间分布图。经电机型式试验测试,设计方案满足技术要求。
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.