In this paper,the experience in the treatment of complications due to continuousambulatory peritoneal dialysis for chronic renal failure with traditional Chinese medicine(TCM)is reported.Modified Renshen Yangrong Tang...In this paper,the experience in the treatment of complications due to continuousambulatory peritoneal dialysis for chronic renal failure with traditional Chinese medicine(TCM)is reported.Modified Renshen Yangrong Tang(Ginseng Nutrition Decoction)wasused for anorexia and hypoproteinemia;modified Xiangsha Liujunzi Tang(Decoction ofCyperus and Amomum with Six Noble Ingredients)for abdominal pain and distension;modified Da Chaihu Tang(Major Bupleurum Decoction)for peritonitis;modifiedShenling Baizhu San(Powder of Ginseng,Poria and Atractylodes)for diarrhea due toinsufficiency of the spleen with abundance of dampness;Lizhong Tang(Decoction forRegulating the Function of Middle-jiao)and modified Sishen Wan(Pills of FourMiraculous Drugs)for insufficiency of both the spleen and the kidney;Siwu Tang(Decoction of Four Ingredients)added with other drugs for cutaneous pruritus,andGuishao Sijunzi Tang(Decoction of Four Noble Drugs added with Chinese Angelica Rootand white Peony Root)for renal anemia.The therapeutic principles of invigorating theliver and kidney,strengthening the bones and muscles,and promoting blood circulation toeliminate blood stasis were adopted in the treatment of renal osteopathy,and thetherapeutic principles of invigorating the liver and kidney,expelling phlegm and resolvingdampness,and promoting blood circulation to eliminate blood stasis in the treatment ofhyperlipemia.Shen Tekang capsules(capsules for improving the renal function)wasadministered to patients for strengthening the viability and improving the nutrition state,and the recipe for treating renal function failure(both formulated by the authors)forimproving the renal function so as to decrease the frequency and duration of dialysis.展开更多
Objective: To investigate the antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 (HMGN2) on Escherichia coil K12, focusing on the antibacterial and antibiofilm formation effects. Its chemot...Objective: To investigate the antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 (HMGN2) on Escherichia coil K12, focusing on the antibacterial and antibiofilm formation effects. Its chemotactic activity on human neutrophils was also investigated. Methods: Human tissue-derived HMGN2 (tHMGN2) was extracted from fresh uterus fiber cystadenoma and purified by HPl100 reversed-phase high-performance liquid chromatography (RP-HPLC). Recombinant human HMGN2 (rHMGN2) was generated in E. coil DE3 carrying PET-32a- c(+)-HMGN2. Antibacterial activity of HMGN2 was determined using an agarose diffusion assay and minimum inhibitory concentration (MIC) of HMGN2 was determined by the microdilution broth method. Bacterial membrane permeability assay and DNA binding assay were performed. The antibiofilm effect of HMGN2 was investigated using a crystal violet assay and electron microscopy scanning. The activating effect and chemotactic activity of HMGN2 on neutrophils were determined using a nitroblue tetrazolium (NBT) reduction assay and Transwell chamber cell migra- tion assay, respectively. Results: HMGN2 showed a relatively high potency against Gram-negative bacteria E. coli and the MIC of HMGN2 was 16.25 μg/ml. Elevated bacterial membrane permeability was observed in HMGN2-treated E. coil K12. HMGN2 could also bind the bacterial plasmid and genomic DNA in a dose-dependent manner. The antibiofilm effect of HMGN2 on E. coil K12 was confirmed by crystal violet staining and scanning electron microscopy. However, the activating effects and chemotactic effects of HMGN2 on human neutrophils were not observed. Con- clusions: As an antimicrobial peptide (AMP), HMGN2 possessed a good capacity for antibacterial and antibiofilm activities on E. coil K12. This capacity might be associated with disruption of the bacterial membrane and combination of DNA, which might affect the growth and viability of E. coil.展开更多
In this study,we mainly focus on the structural morphology and inter-atomic bonding state of tribofilms resulting from a highly-hydrogenated amorphous carbon(a-C:H) film in order to ascertain the underlying mechanisms...In this study,we mainly focus on the structural morphology and inter-atomic bonding state of tribofilms resulting from a highly-hydrogenated amorphous carbon(a-C:H) film in order to ascertain the underlying mechanisms for its superlubric behavior(i.e.,less than 0.01 friction coefficient).Specifically,we achieved superlubricity(i.e.,friction coefficients of down to 0.003) with this film in dry nitrogen and argon atmospheres especially when the tribo-pair is made of an a-C:H coated Si disk sliding against an a-C:H coated steel ball,while the a-C:H coated disk against uncoated ball does not provide superlubricity.We also found that the state of superlubricity is more stable in argon than in nitrogen and the formation of a smooth and uniformly-thick carbonaceous tribofilm appears to be one of the key factors for the realization of such superlubricity.Besides,the interfacial morphology of sliding test pairs and the atomic-scale bond structure of the carbon-based tribofilms also play an important role in the observed superlubric behavior of a-C:H films.Using Raman spectroscopy and high resolution transmission electron microscopy,we have compared the structural differences of the tribofilms produced on bare and a-C:H coated steel balls.For the a-C:H coated ball as mating material which provided superlow friction in argon,structural morphology of the tribofilm was similar or comparable to that of the original a-C:H coating;while for the bare steel ball,the sp^2-bonded C fraction in the tribofilm increased and a fingerprint-like nanocrystalline structure was detected by high resolution transmission electron microscopy(HRTEM).We also calculated the shear stresses for different tribofilms,and established a relationship between the magnitude of the shear stresses and the extent of sp^3-sp^2 phase transformation.展开更多
With well-defined channels and tunable functionality, metal-organic frameworks (MOFs) have inspired the design of a new class of ion-conductive compounds. In contrast to the extensive studies on proton- conductive M...With well-defined channels and tunable functionality, metal-organic frameworks (MOFs) have inspired the design of a new class of ion-conductive compounds. In contrast to the extensive studies on proton- conductive MOFs and related membranes attractive for fuel cells, rare reports focus on MOFs in preparation of anion exchange membranes. In this study, chloromethylated MIL-101 (Cr) was prepared and incor- porated into chloromethylated poly (ether ether ketone) (PEEK) as a multifunctional filler to prepare imidazolium PEEK/imidazolium MIL-101(Cr) (ImPEEK/ImMIL-101(Cr)) anion exchange membrane after synchronous quaternization. The successful synthesis and chloromethylation of MIL-101(Cr) were veri- fied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy while the enhanced performance of composite membranes in hydroxide conductivity, mechanical strength and dimensional stability were evaluated by alternating-current impedance, electronic stretching machine and measurement of swelling ratio. Specifically, incorporating 5.0wt% ImMIL-101(Cr) afforded a 71.4% increase in hydroxide conductivity at 20℃, 100% RH. Besides, the composite membranes exhibited enhanced dimensional stability and mechanical strength due to the rigid framework of ImMIL- 101(Cr). At room temperature and the ImM1L-101(Cr) content of 10wt%, the swelling ratio of the ImPEEK/lmMIL-101(Cr) was 70.04% lower while the tensile strength was 47.5% higher than that of the pure membrane.展开更多
By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-vi...By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.展开更多
文摘In this paper,the experience in the treatment of complications due to continuousambulatory peritoneal dialysis for chronic renal failure with traditional Chinese medicine(TCM)is reported.Modified Renshen Yangrong Tang(Ginseng Nutrition Decoction)wasused for anorexia and hypoproteinemia;modified Xiangsha Liujunzi Tang(Decoction ofCyperus and Amomum with Six Noble Ingredients)for abdominal pain and distension;modified Da Chaihu Tang(Major Bupleurum Decoction)for peritonitis;modifiedShenling Baizhu San(Powder of Ginseng,Poria and Atractylodes)for diarrhea due toinsufficiency of the spleen with abundance of dampness;Lizhong Tang(Decoction forRegulating the Function of Middle-jiao)and modified Sishen Wan(Pills of FourMiraculous Drugs)for insufficiency of both the spleen and the kidney;Siwu Tang(Decoction of Four Ingredients)added with other drugs for cutaneous pruritus,andGuishao Sijunzi Tang(Decoction of Four Noble Drugs added with Chinese Angelica Rootand white Peony Root)for renal anemia.The therapeutic principles of invigorating theliver and kidney,strengthening the bones and muscles,and promoting blood circulation toeliminate blood stasis were adopted in the treatment of renal osteopathy,and thetherapeutic principles of invigorating the liver and kidney,expelling phlegm and resolvingdampness,and promoting blood circulation to eliminate blood stasis in the treatment ofhyperlipemia.Shen Tekang capsules(capsules for improving the renal function)wasadministered to patients for strengthening the viability and improving the nutrition state,and the recipe for treating renal function failure(both formulated by the authors)forimproving the renal function so as to decrease the frequency and duration of dialysis.
基金supported by the National Natural Science Foundation of China(Nos.30470763,81470931,and 31401188)the China Medical Board of New York(No.98-861)the Youth Foundation of Sichuan University(No.2014SCU11042),China
文摘Objective: To investigate the antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 (HMGN2) on Escherichia coil K12, focusing on the antibacterial and antibiofilm formation effects. Its chemotactic activity on human neutrophils was also investigated. Methods: Human tissue-derived HMGN2 (tHMGN2) was extracted from fresh uterus fiber cystadenoma and purified by HPl100 reversed-phase high-performance liquid chromatography (RP-HPLC). Recombinant human HMGN2 (rHMGN2) was generated in E. coil DE3 carrying PET-32a- c(+)-HMGN2. Antibacterial activity of HMGN2 was determined using an agarose diffusion assay and minimum inhibitory concentration (MIC) of HMGN2 was determined by the microdilution broth method. Bacterial membrane permeability assay and DNA binding assay were performed. The antibiofilm effect of HMGN2 was investigated using a crystal violet assay and electron microscopy scanning. The activating effect and chemotactic activity of HMGN2 on neutrophils were determined using a nitroblue tetrazolium (NBT) reduction assay and Transwell chamber cell migra- tion assay, respectively. Results: HMGN2 showed a relatively high potency against Gram-negative bacteria E. coli and the MIC of HMGN2 was 16.25 μg/ml. Elevated bacterial membrane permeability was observed in HMGN2-treated E. coil K12. HMGN2 could also bind the bacterial plasmid and genomic DNA in a dose-dependent manner. The antibiofilm effect of HMGN2 on E. coil K12 was confirmed by crystal violet staining and scanning electron microscopy. However, the activating effects and chemotactic effects of HMGN2 on human neutrophils were not observed. Con- clusions: As an antimicrobial peptide (AMP), HMGN2 possessed a good capacity for antibacterial and antibiofilm activities on E. coil K12. This capacity might be associated with disruption of the bacterial membrane and combination of DNA, which might affect the growth and viability of E. coil.
基金supported by the National Basic Research Program of China (Grant No.2011CB013404)National Natural Science Foundation of China(Grant Nos.51321092,51527901 and 51375010)
文摘In this study,we mainly focus on the structural morphology and inter-atomic bonding state of tribofilms resulting from a highly-hydrogenated amorphous carbon(a-C:H) film in order to ascertain the underlying mechanisms for its superlubric behavior(i.e.,less than 0.01 friction coefficient).Specifically,we achieved superlubricity(i.e.,friction coefficients of down to 0.003) with this film in dry nitrogen and argon atmospheres especially when the tribo-pair is made of an a-C:H coated Si disk sliding against an a-C:H coated steel ball,while the a-C:H coated disk against uncoated ball does not provide superlubricity.We also found that the state of superlubricity is more stable in argon than in nitrogen and the formation of a smooth and uniformly-thick carbonaceous tribofilm appears to be one of the key factors for the realization of such superlubricity.Besides,the interfacial morphology of sliding test pairs and the atomic-scale bond structure of the carbon-based tribofilms also play an important role in the observed superlubric behavior of a-C:H films.Using Raman spectroscopy and high resolution transmission electron microscopy,we have compared the structural differences of the tribofilms produced on bare and a-C:H coated steel balls.For the a-C:H coated ball as mating material which provided superlow friction in argon,structural morphology of the tribofilm was similar or comparable to that of the original a-C:H coating;while for the bare steel ball,the sp^2-bonded C fraction in the tribofilm increased and a fingerprint-like nanocrystalline structure was detected by high resolution transmission electron microscopy(HRTEM).We also calculated the shear stresses for different tribofilms,and established a relationship between the magnitude of the shear stresses and the extent of sp^3-sp^2 phase transformation.
基金supported by the National Science Fund for Distinguished Young Scholars(21125627)the National Natural Science Founds of China(21490583 and 21621004)the Program of Introducing Talents of Discipline to Universities(B06006).
文摘With well-defined channels and tunable functionality, metal-organic frameworks (MOFs) have inspired the design of a new class of ion-conductive compounds. In contrast to the extensive studies on proton- conductive MOFs and related membranes attractive for fuel cells, rare reports focus on MOFs in preparation of anion exchange membranes. In this study, chloromethylated MIL-101 (Cr) was prepared and incor- porated into chloromethylated poly (ether ether ketone) (PEEK) as a multifunctional filler to prepare imidazolium PEEK/imidazolium MIL-101(Cr) (ImPEEK/ImMIL-101(Cr)) anion exchange membrane after synchronous quaternization. The successful synthesis and chloromethylation of MIL-101(Cr) were veri- fied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy while the enhanced performance of composite membranes in hydroxide conductivity, mechanical strength and dimensional stability were evaluated by alternating-current impedance, electronic stretching machine and measurement of swelling ratio. Specifically, incorporating 5.0wt% ImMIL-101(Cr) afforded a 71.4% increase in hydroxide conductivity at 20℃, 100% RH. Besides, the composite membranes exhibited enhanced dimensional stability and mechanical strength due to the rigid framework of ImMIL- 101(Cr). At room temperature and the ImM1L-101(Cr) content of 10wt%, the swelling ratio of the ImPEEK/lmMIL-101(Cr) was 70.04% lower while the tensile strength was 47.5% higher than that of the pure membrane.
基金sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010EM027)the Applied and Basic Research Project (11-2-4-1-(2)-jch) of Qingdao Municipal Science Technology Commission of China
文摘By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.