A RTD-based TSRAM cell is introduced.The mechanism of different types of access transistors in this cell is described and NMOS is found most suitable from consideration of the cell size and power consumption.The archi...A RTD-based TSRAM cell is introduced.The mechanism of different types of access transistors in this cell is described and NMOS is found most suitable from consideration of the cell size and power consumption.The architecture of a TSRAM system is presented.Simulation results show that the RTD-based TSRAM has advanced characteristics of small area,low power,and high speed.展开更多
A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flo...A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.展开更多
文摘A RTD-based TSRAM cell is introduced.The mechanism of different types of access transistors in this cell is described and NMOS is found most suitable from consideration of the cell size and power consumption.The architecture of a TSRAM system is presented.Simulation results show that the RTD-based TSRAM has advanced characteristics of small area,low power,and high speed.
文摘A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.