Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway...Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.展开更多
As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highw...As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.展开更多
Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in thi...Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in this paper, a distributed real-time auto- surveillance system is presented. The freeway traffic videos are taken as input video from Pan Tilt Zoom (PTZ) camera, and then produces an analysis of the states and activity of the vehicles in the region of interested (ROI), if there is any abnormal instance, an alarm and corresponding traffic video are sent to awake surveillants by Ethernet. To achieve this functionality, our system relies on three main procedures. The first one initializes the system. It detects the ROI of the scene, and performs the camera calibration to remove the perspective effect of the incoming image. The second one segments moving vehicles from the images, eliminate shadow and tracks them real-time. It uses a set of methods to obtain the background of the image, extracts the moving regions and tracks these moving regions by matching them between frames of the video sequence to obtain high-level information such as color, size, velocity, and trajectories of moving vehicles. In the third procedure, activities of vehicles are analyzed based on a series of preset situations which would happen on freeway. The detail information of each vehicle and the global statistical information are checked to find out any abnormal instance, and then triggered an alarm. We present details of the system, together with experiment results which demonstrate the accuracy and time responses.展开更多
文摘Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.
文摘As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.
文摘Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in this paper, a distributed real-time auto- surveillance system is presented. The freeway traffic videos are taken as input video from Pan Tilt Zoom (PTZ) camera, and then produces an analysis of the states and activity of the vehicles in the region of interested (ROI), if there is any abnormal instance, an alarm and corresponding traffic video are sent to awake surveillants by Ethernet. To achieve this functionality, our system relies on three main procedures. The first one initializes the system. It detects the ROI of the scene, and performs the camera calibration to remove the perspective effect of the incoming image. The second one segments moving vehicles from the images, eliminate shadow and tracks them real-time. It uses a set of methods to obtain the background of the image, extracts the moving regions and tracks these moving regions by matching them between frames of the video sequence to obtain high-level information such as color, size, velocity, and trajectories of moving vehicles. In the third procedure, activities of vehicles are analyzed based on a series of preset situations which would happen on freeway. The detail information of each vehicle and the global statistical information are checked to find out any abnormal instance, and then triggered an alarm. We present details of the system, together with experiment results which demonstrate the accuracy and time responses.