高速公路交通量预测中原始数据存在大量缺失值,为了挖掘高速公路交通量时间序列中的更多信息,提高交通量预测的精度,构建了缺失值修复方法、Dropout以及长短时记忆网络(long short term memory, LSTM)相结合的高速公路流量混合预测模型...高速公路交通量预测中原始数据存在大量缺失值,为了挖掘高速公路交通量时间序列中的更多信息,提高交通量预测的精度,构建了缺失值修复方法、Dropout以及长短时记忆网络(long short term memory, LSTM)相结合的高速公路流量混合预测模型。通过缺失值修复方法对高速公路流量数据进行数据修复;在LSTM网络中非循环的部分加入Dropout机制来减少过拟合情况;通过实测交通量数据进行实验,实验结果表明考虑缺失值修复的Dropout-LSTM的高速公路流量预测模型相较于LSTM及常用高速公路预测模型,预测精度更高,验证了该模型在短时高速公路交通量预测中的有效性。展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
文摘高速公路交通量预测中原始数据存在大量缺失值,为了挖掘高速公路交通量时间序列中的更多信息,提高交通量预测的精度,构建了缺失值修复方法、Dropout以及长短时记忆网络(long short term memory, LSTM)相结合的高速公路流量混合预测模型。通过缺失值修复方法对高速公路流量数据进行数据修复;在LSTM网络中非循环的部分加入Dropout机制来减少过拟合情况;通过实测交通量数据进行实验,实验结果表明考虑缺失值修复的Dropout-LSTM的高速公路流量预测模型相较于LSTM及常用高速公路预测模型,预测精度更高,验证了该模型在短时高速公路交通量预测中的有效性。
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.