-
题名顾及地形差异的高速公路结冰预报模型研究
- 1
-
-
作者
黄佳威
王永前
吴小娟
-
机构
成都信息工程大学资源环境学院
-
出处
《大气科学》
CSCD
北大核心
2024年第4期1499-1510,共12页
-
基金
中国气象局风云三号(02批)气象卫星地面应用系统工程项目ZQC-J19193。
-
文摘
基于四川省158个逐日气象观测站点数据以及2018~2020年道路气象灾害资料构建数据集,利用皮尔逊相关系数对道路结冰同温度类、湿度类、降水类及其日变化复合特征等14个气象因子进行相关性分析,探索平原和山区地形下道路结冰模式差异,通过数据集构建不同地形下的Logistic结冰预警模型,同时利用在线性模块中添加L1惩罚项的Lasso(Least Absolute Shrinkage and Selection Operator)原理、基于正交变换减少数据维度的主成分分析(Principle Component Analysis,简称PCA)和基于显著性对变量进行筛选的逐步回归(Stepwise Regression,简称SR)三种方法对模型进行降维改进,并采用五折交叉验证减小偶然误差。研究结果可为复杂地形的道路结冰预警预报提供参考。结论表明:(1)低温均为道路结冰发生的首要条件,相对湿度因子与结冰的相关系数差异说明不同地形下水汽供给模式存在区别。(2)Lasso-Logistic模型在平原和山区地形下预测效果均最佳,平均准确率分别为87.67%和82.62%;SR-Logistic的平均准确率为85.77%和80.64%;PCA-Logistic的准确率均值为84.09%和77.44%。(3)引入气象因子随时间变化的复合特征能够提高模型的预测准确率,添加复合特征的Lasso-Logistic、SR-Logistic和PCA-Logistic模型准确率平均提升了3.68%、3.00%和3.00%。(4)所有模型在平原地区的表现都好于山区,Lasso、SR和PCA Logistic模型的平均准确率分别高出5.06%、5.13%和6.65%。
-
关键词
高速公路结冰
LOGISTIC
回归
气象因子
地形差异
-
Keywords
Highway icing
Logistic regression
Meteorological factors
Topographic difference
-
分类号
P49
[天文地球—大气科学及气象学]
-