An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody s...An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains.展开更多
基金Project(2020YFF0304103-03) supported by the National Key Research and Development Program of ChinaProject(2020JJ4737) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project (202045014) supported by the Central University Financial Funds,ChinaProject(P2019J023) supported by the Science and Technology Research Program of China National Railway Group Co.,Ltd。
文摘An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains.