In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evalu...In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.展开更多
As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highw...As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.展开更多
Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway...Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.展开更多
The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in ...The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.展开更多
In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship...In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.展开更多
This paper concerns the Strategic Environmental Assessment of the construction of some major Greek motorways: the Ionia Motorway, the Peloponnese Motorway and the Athens-Lamia Motorway. In the beginning the natural a...This paper concerns the Strategic Environmental Assessment of the construction of some major Greek motorways: the Ionia Motorway, the Peloponnese Motorway and the Athens-Lamia Motorway. In the beginning the natural and cultural diversity of the Greek landscape as well as its conservation needs are discussed. The landscape impact assessment methodology consists of the identification of environmental goals, of sensitive landscape parameters, of environmental indicators and of acceptable impact thresholds. The selection of alternative solutions as well as of mitigation measures has been studied, on the basis of relevant environmental indicators. The developed methodology may constitute a tool for the environmental management of other road programs of great scale.展开更多
Debris flows caused by heavy rainfall in mountain areas near expressways lead to severe social and economic losses and sometimes result in casualties.Therefore, the development of a real-time system for debris-flow ha...Debris flows caused by heavy rainfall in mountain areas near expressways lead to severe social and economic losses and sometimes result in casualties.Therefore, the development of a real-time system for debris-flow hazard assessment is necessary to provide preliminary information for rapid decision making about evacuations or restoration measures, as well as to prevent secondary disasters caused by debris flows. Recently,various map-based approaches have been proposed using multi-attribute criteria and assessment methods for debrisflow susceptibilities. For the macrozonation of debris-flow hazard at a national scale, a simplified method such as the Korea Expressway Corporation(KEC) debris-flow hazard assessment method can be applied for systematic analysis based on geographic information systems(GIS) and monitoring networks. In this study, a GIS-based framework of real-time debris-flow hazard assessment for expressway sections is proposed based on the KEC debris-flow hazard assessment method. First, the KEC-based method was standardized in a systematic fashion using Arc GIS,enabling the objective and quantitative acquisition of various attribute datasets. The quantification of rainfall criteria also was considered. A safety management system for debris-flow hazard was developed based on the GIS platform. Finally, the method was applied and verified on three expressway sections in Korea. The grading standard for each individual influencing attribute was subsequently modified to more accurately assess the debris-flow hazards.展开更多
文摘In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.
文摘As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.
文摘Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.
文摘The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.
基金Sponsored by the National Natrural Science Foundation of China (Grant No.59838310).
文摘In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.
文摘This paper concerns the Strategic Environmental Assessment of the construction of some major Greek motorways: the Ionia Motorway, the Peloponnese Motorway and the Athens-Lamia Motorway. In the beginning the natural and cultural diversity of the Greek landscape as well as its conservation needs are discussed. The landscape impact assessment methodology consists of the identification of environmental goals, of sensitive landscape parameters, of environmental indicators and of acceptable impact thresholds. The selection of alternative solutions as well as of mitigation measures has been studied, on the basis of relevant environmental indicators. The developed methodology may constitute a tool for the environmental management of other road programs of great scale.
基金supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM)the National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A7037372) funded by the Korean Government (MSIP)the Korea Expressway Corporation for its leadership and support
文摘Debris flows caused by heavy rainfall in mountain areas near expressways lead to severe social and economic losses and sometimes result in casualties.Therefore, the development of a real-time system for debris-flow hazard assessment is necessary to provide preliminary information for rapid decision making about evacuations or restoration measures, as well as to prevent secondary disasters caused by debris flows. Recently,various map-based approaches have been proposed using multi-attribute criteria and assessment methods for debrisflow susceptibilities. For the macrozonation of debris-flow hazard at a national scale, a simplified method such as the Korea Expressway Corporation(KEC) debris-flow hazard assessment method can be applied for systematic analysis based on geographic information systems(GIS) and monitoring networks. In this study, a GIS-based framework of real-time debris-flow hazard assessment for expressway sections is proposed based on the KEC debris-flow hazard assessment method. First, the KEC-based method was standardized in a systematic fashion using Arc GIS,enabling the objective and quantitative acquisition of various attribute datasets. The quantification of rainfall criteria also was considered. A safety management system for debris-flow hazard was developed based on the GIS platform. Finally, the method was applied and verified on three expressway sections in Korea. The grading standard for each individual influencing attribute was subsequently modified to more accurately assess the debris-flow hazards.