To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The res...To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.展开更多
This paper studies and analyzes the response and behavior of regular and irregular building structures in earthquake zones. The non-linear dynamic response of tall buildings structures were obtained using five simulat...This paper studies and analyzes the response and behavior of regular and irregular building structures in earthquake zones. The non-linear dynamic response of tall buildings structures were obtained using five simulated models, which were subjected to UBC code dynamic and static equivalent earthquake loads. The maximum response of the structural models were computed and analyzed in order to verify the effects of building configuration on drift results. Drift results agreed with codes recommendations regarding building configuration and showed that regular buildings performance in resisting earthquake forces is better than that of irregular buildings.展开更多
The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitud...The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitudinal axis is much smaller than those around the other two axes,resulting in strong coupling of rotations around the three axes.Thus,the stability analysis of rolling motion for such flying vehicles is more complicated than those for conventional aircrafts,and there is no available result of stability analysis which can readily be applied to such cases.This paper is mainly concerned with the stated problem.Considering the practical situation,our investigation is targeted a slightly simpler problem,namely the rolling stability of flying vehicle under known pitching motion.The stability criterion of rolling motion is obtained with and without lateral motions.We also conducted numerical simulation for the pitching-rolling coupled motions of flying vehicles by solving Navier-Stokes equations coupled with dynamic equations of flight.The results of simulation agree well with those of theoretical analysis and experiments.展开更多
文摘To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.
文摘This paper studies and analyzes the response and behavior of regular and irregular building structures in earthquake zones. The non-linear dynamic response of tall buildings structures were obtained using five simulated models, which were subjected to UBC code dynamic and static equivalent earthquake loads. The maximum response of the structural models were computed and analyzed in order to verify the effects of building configuration on drift results. Drift results agreed with codes recommendations regarding building configuration and showed that regular buildings performance in resisting earthquake forces is better than that of irregular buildings.
基金supported by the National Natural Science Foundation of China(Grant Nos.91216203 and 91216304)
文摘The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitudinal axis is much smaller than those around the other two axes,resulting in strong coupling of rotations around the three axes.Thus,the stability analysis of rolling motion for such flying vehicles is more complicated than those for conventional aircrafts,and there is no available result of stability analysis which can readily be applied to such cases.This paper is mainly concerned with the stated problem.Considering the practical situation,our investigation is targeted a slightly simpler problem,namely the rolling stability of flying vehicle under known pitching motion.The stability criterion of rolling motion is obtained with and without lateral motions.We also conducted numerical simulation for the pitching-rolling coupled motions of flying vehicles by solving Navier-Stokes equations coupled with dynamic equations of flight.The results of simulation agree well with those of theoretical analysis and experiments.