Enzymatic hydrolysis of lignocellulose is often considered to be the major economic bottleneck of the production process of bioethanol from lignocellulose. It is generally admitted that the most efficient organism for...Enzymatic hydrolysis of lignocellulose is often considered to be the major economic bottleneck of the production process of bioethanol from lignocellulose. It is generally admitted that the most efficient organism for the production ofcellulolytic enzymes is the fungus Trichoderma reesei, mostly due to its high secretion capacity. Unfortunately, this fungus secretes very low concentrations of β-glucosidase, thereby often requiring β-glucosidase supplementation for complete cellulose hydrolysis. It is especially important to have sufficient quantities of β-glucosidase in order to prevent inhibition of cellobiohydrolases by cellobiose. In order to optimize the produced cocktail, a more efficient β-glucosidase was cloned into T. reesei CL847 strain. The new strain, called CL847 TR3002, secretes the evolved β-glucosidase and was tested for cellulase production in laboratory-scale reactors. Its growth kinetics and cellulase production were characterized using fed-batch and chemostat modes under various culture conditions. The cellulase activities of the evolved strain were compared with activities of the parent strain. In addition, hydrolysis of a steam exploded wheat straw was performed at three different enzyme-loading levels (5 mg/g, 10 mg/g and 20 mg/g of dry matter) and a new kinetic model was developed.展开更多
文摘Enzymatic hydrolysis of lignocellulose is often considered to be the major economic bottleneck of the production process of bioethanol from lignocellulose. It is generally admitted that the most efficient organism for the production ofcellulolytic enzymes is the fungus Trichoderma reesei, mostly due to its high secretion capacity. Unfortunately, this fungus secretes very low concentrations of β-glucosidase, thereby often requiring β-glucosidase supplementation for complete cellulose hydrolysis. It is especially important to have sufficient quantities of β-glucosidase in order to prevent inhibition of cellobiohydrolases by cellobiose. In order to optimize the produced cocktail, a more efficient β-glucosidase was cloned into T. reesei CL847 strain. The new strain, called CL847 TR3002, secretes the evolved β-glucosidase and was tested for cellulase production in laboratory-scale reactors. Its growth kinetics and cellulase production were characterized using fed-batch and chemostat modes under various culture conditions. The cellulase activities of the evolved strain were compared with activities of the parent strain. In addition, hydrolysis of a steam exploded wheat straw was performed at three different enzyme-loading levels (5 mg/g, 10 mg/g and 20 mg/g of dry matter) and a new kinetic model was developed.