进行了荷重升温还原法检验高钛型烧结矿的还原粉化性实验 ,分析研究了高钛型烧结矿在高炉内中低温区的还原粉化行为以及 F e O含量对烧结矿还原粉化和透气性的影响 ,结果表明 ,提高高钛型烧结矿的 Fe O含量可改善其还原粉化性能 ,Fe O...进行了荷重升温还原法检验高钛型烧结矿的还原粉化性实验 ,分析研究了高钛型烧结矿在高炉内中低温区的还原粉化行为以及 F e O含量对烧结矿还原粉化和透气性的影响 ,结果表明 ,提高高钛型烧结矿的 Fe O含量可改善其还原粉化性能 ,Fe O含量以 8%~ 10展开更多
The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(...The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.展开更多
基金Project(2013CB632603)supported by the National Basic Research Program of ChinaProject(2015BAB19B02)supported by the National Key Technology R&D Program of ChinaProjects(51674084,51174051,51574082)supported by National Natural Science Foundation of China
文摘The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.