Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan...Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.展开更多
Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as ra...Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.展开更多
China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is ...China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.展开更多
The inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithi...The inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithium ion batteries. In this study, we report on high-density TiO2 nanotubes (NTs) branched onto a carbon nanofiber (CNF) "tree" that provide a low resistance current path between the current collector and the TiO2 NTs. Compared to a TiO2 NT array grown directly on the current collector, the branched TiO2 NTs tree, coupled with the CNF electrode, exhibited -10 times higher areal energy density and excellent rate capability (discharge capacity of -150 mA.h.g-1 at a current density of 1,000 mA·g-1). Based on the detailed experimental results and associated theoretical analysis, we demonstrate that the introduction of CNFs with direct electric contact with the current collector enables a significant increase in areal capacity (mA·h·cm-2) as well as excellent rate capability.展开更多
基金financial supports from the National Key R&D Program of China (No.2023YFB3712400)National Natural Science Foundation of China (No.52371040)Joint Fund for Regional Innovation of Hunan Provincial Natural Science Foundation,China (No.2023JJ50333)。
文摘Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.
基金Project (2007CB613504) supported by the National Basic Research Program of ChinaProject (307009) supported by the Foundation for Key Program of Ministry of Education,China+1 种基金Project (N110423003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (E2012501012) supported by Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China
文摘Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.
文摘China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.
文摘The inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithium ion batteries. In this study, we report on high-density TiO2 nanotubes (NTs) branched onto a carbon nanofiber (CNF) "tree" that provide a low resistance current path between the current collector and the TiO2 NTs. Compared to a TiO2 NT array grown directly on the current collector, the branched TiO2 NTs tree, coupled with the CNF electrode, exhibited -10 times higher areal energy density and excellent rate capability (discharge capacity of -150 mA.h.g-1 at a current density of 1,000 mA·g-1). Based on the detailed experimental results and associated theoretical analysis, we demonstrate that the introduction of CNFs with direct electric contact with the current collector enables a significant increase in areal capacity (mA·h·cm-2) as well as excellent rate capability.