The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona...The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.展开更多
基金Project(2012QNZT050)supported by the Special Fund for Basic Scientific Research of Central Colleges,ChinaProjects(51208518,U1361204,51208519,51108464)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Postdoctoral Foundation of Central South University,ChinaProjects(2013RS4030,2012RS4002)sponsored by Hunan Postdoctoral Scientific Program,China
文摘The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.