The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodi...Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.展开更多
A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 m...A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.展开更多
Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal o...Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal of kaolin,ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 in reducing atmosphere at 1373 K for 60 min.The thermodynamic analyses and alkali leaching results show that the composition of the Al-Si spinel in roasted kaolin is close to that of 3Al2O3·2SiO2 and the spinel is dissolved with increasing leaching time,resulting in difficulty in deeply separating alumina and silica in kaolin by the traditional roasting-leaching process.On the contrary,the efficient separation of alumina and silica in kaolin can be reached by fully converting kaolinite into insoluble hercynite and soluble free silica,namely quartz solid solution and cristobalite solid solution,during reduction roasting,followed by alkali leaching of the obtained clinker.Furthermore,experimental results from treating high-silica diasporic bauxite indicate that the reduction roasting-alkali leaching process is potential to separate silica and alumina in aluminosilicates.展开更多
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.
基金financially supported by the National Natural Science Foundation of China (Nos.51904058,52174240)the Fundamental Research Funds for the Central Universities,China (No.2101023)。
文摘A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.
基金Project(51604309) supported by the National Natural Science Foundation of China
文摘Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal of kaolin,ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 in reducing atmosphere at 1373 K for 60 min.The thermodynamic analyses and alkali leaching results show that the composition of the Al-Si spinel in roasted kaolin is close to that of 3Al2O3·2SiO2 and the spinel is dissolved with increasing leaching time,resulting in difficulty in deeply separating alumina and silica in kaolin by the traditional roasting-leaching process.On the contrary,the efficient separation of alumina and silica in kaolin can be reached by fully converting kaolinite into insoluble hercynite and soluble free silica,namely quartz solid solution and cristobalite solid solution,during reduction roasting,followed by alkali leaching of the obtained clinker.Furthermore,experimental results from treating high-silica diasporic bauxite indicate that the reduction roasting-alkali leaching process is potential to separate silica and alumina in aluminosilicates.