The application of higher order spectra to machinery faults diagnosis is studied in this paper.A brief review of bispectra is presented,and more emphasis is placed on the ability of higher order spectra to extract dia...The application of higher order spectra to machinery faults diagnosis is studied in this paper.A brief review of bispectra is presented,and more emphasis is placed on the ability of higher order spectra to extract diagnostic information from fault signals.Furthermore,by use of the algorithm of higher order spectra,two kinds of typical mechanical faults are analyzed.Results show that the high order spectra analysis is a more efficient method in machinery diagnosis compared with the FFT based spectral analysis.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
文摘The application of higher order spectra to machinery faults diagnosis is studied in this paper.A brief review of bispectra is presented,and more emphasis is placed on the ability of higher order spectra to extract diagnostic information from fault signals.Furthermore,by use of the algorithm of higher order spectra,two kinds of typical mechanical faults are analyzed.Results show that the high order spectra analysis is a more efficient method in machinery diagnosis compared with the FFT based spectral analysis.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.