期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
高阶有限元方法在中子扩散方程中的应用
1
作者 蔡云 李庆 王侃 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第1期118-125,共8页
应用高阶有限元方法求解中子扩散方程第1本征对和高阶本征对,比较了低阶和高阶有限元方法的性能差异以及LGL(Legendre-Gauss-Lobatto)节点和均匀网格节点之间的差异。通过二维BIBLIS和二维IAEA两个基准题,验证了该算法能求解高阶本征对... 应用高阶有限元方法求解中子扩散方程第1本征对和高阶本征对,比较了低阶和高阶有限元方法的性能差异以及LGL(Legendre-Gauss-Lobatto)节点和均匀网格节点之间的差异。通过二维BIBLIS和二维IAEA两个基准题,验证了该算法能求解高阶本征对。结果表明,采用LGL节点较均匀节点的高阶有限元方法求解速度更快。 展开更多
关键词 高阶有限元方法 高阶本征向量 Legendre-Gauss-Lobatto节点
下载PDF
基于高阶有限元方法的人体头部比吸收率分析 被引量:5
2
作者 白杨 左胜 +2 位作者 张玉 赵勋旺 王楠 《微波学报》 CSCD 北大核心 2019年第1期79-82,共4页
随着智能手机的普及,手机电磁辐射对人体健康的影响受到越来越多的关注。针对人体组织结构复杂、媒质不均匀的特点,采用高阶有限元方法对人体进行电磁建模。该方法可以高效、可靠地分析手机天线对人体局部比吸收率(SAR)分布的影响。文... 随着智能手机的普及,手机电磁辐射对人体健康的影响受到越来越多的关注。针对人体组织结构复杂、媒质不均匀的特点,采用高阶有限元方法对人体进行电磁建模。该方法可以高效、可靠地分析手机天线对人体局部比吸收率(SAR)分布的影响。文中介绍了高阶有限元方法基本理论,并模拟计算了900 MHz频率的PIFA手机作用下均匀介质人头模型的局部比吸收率分布,其结果与商业软件对比,验证了该方法的正确性。最后,在900 MHz的频率下应用高阶有限元法模拟计算了PIFA手机对复杂分层非均匀介质人头局部比吸收率分布的影响,表明了该方法的可行性和可靠性。 展开更多
关键词 高阶有限元方法 比吸收率 平面倒F天线(PIFA)
下载PDF
自适应高阶矢量有限元方法在随钻电阻率测井中的应用 被引量:11
3
作者 刘得军 马中华 +1 位作者 苑赫 安涛 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期77-83,92,共8页
利用自适应高阶矢量有限元方法模拟不同模型仪器响应,分析随钻电阻率测井中井眼、源距、接收线圈之间的距离、线圈与地层之间的距离以及发射线圈长度等因素对仪器响应的影响。数值模拟结果表明:增大仪器的源距、减小接收线圈之间的距离... 利用自适应高阶矢量有限元方法模拟不同模型仪器响应,分析随钻电阻率测井中井眼、源距、接收线圈之间的距离、线圈与地层之间的距离以及发射线圈长度等因素对仪器响应的影响。数值模拟结果表明:增大仪器的源距、减小接收线圈之间的距离或接收线圈贴近井壁位置,都有利于增强仪器在地层分界面处的分层能力,小井眼环境则有助于获得更加真实的仪器响应特征;与传统的自适应h方法相比,新方法具有计算精度高、求解速度快、误差指数速率收敛等优点。 展开更多
关键词 随钻电阻率测井 自适应方法 高阶矢量有限元方法 指数收敛 数值模拟
下载PDF
高波数Helmholtz方程的高阶连续多罚有限元方法的稳定性估计(英文)
4
作者 朱凌雪 《应用数学》 CSCD 北大核心 2019年第2期423-431,共9页
本文考虑二维和三维区域上高波数Helmholtz散射问题的高阶(多项式次数p≥2)连续多罚有限元方法.本文证明在加罚参数的虚部大于零的条件下,对任意k, h, p,连续多罚有限元方法是绝对稳定的,即都存在唯一解.这里k是波数, h为网格尺寸.
关键词 HELMHOLTZ方程 高波数 稳定性估计 高阶连续多罚有限元方法
下载PDF
高精度自适应hp-FEM在电法测井数值模拟中的应用 被引量:1
5
作者 马中华 刘得军 +2 位作者 李辉 李坤 张嵩 《计算机应用研究》 CSCD 北大核心 2011年第11期4216-4218,共3页
介绍了电法测井数值模拟的建模方法并提出一种新型的自适应高阶有限元方法(hp-FEM)用于求解各向异性地层中的电场问题。电场数值模型在相同的误差精度下,从计算时间和计算自由度的角度对h-FEM、p-FEM和hp-FEM进行了计算比较。数值结果表... 介绍了电法测井数值模拟的建模方法并提出一种新型的自适应高阶有限元方法(hp-FEM)用于求解各向异性地层中的电场问题。电场数值模型在相同的误差精度下,从计算时间和计算自由度的角度对h-FEM、p-FEM和hp-FEM进行了计算比较。数值结果表明,在各向同性和各向异性模式下,该自适应hp-FEM的性能(指数速率收敛)明显优于h-FEM和p-FEM。探讨了算法的收敛性,提出的hp-FEM可以改进现有的正演模拟方法,提高分析的正确性和工作效率,对于减小研究周期有重要的应用价值。 展开更多
关键词 高阶有限元方法 电法测井 自适应 各向异性 指数收敛
下载PDF
易利军教授简介
6
《上海师范大学学报(自然科学版)》 2021年第3期F0003-F0003,共1页
易利军,上海师范大学数学系教授、博士生导师,2004年和2007年毕业于湖南师范大学,和硕士位,2010年毕业于上海师范大学获理学博士学位.2014年曾赴加拿大曼尼巴大1年,2018年在新加坡南洋理工大学作短期访问交流.易利军教授近年来一直从事... 易利军,上海师范大学数学系教授、博士生导师,2004年和2007年毕业于湖南师范大学,和硕士位,2010年毕业于上海师范大学获理学博士学位.2014年曾赴加拿大曼尼巴大1年,2018年在新加坡南洋理工大学作短期访问交流.易利军教授近年来一直从事微分方程数值解法的研究,特别是谱方法和高阶有限元方法的理论及其应用方面的相关研究,并在常微分方程、时滞微分方程、积分微分方程、椭圆型方程和发展型偏微分方程的高精度数值方法领域取得了一系列具有重要学术价值的研究成果,发表SCI论文30余篇. 展开更多
关键词 时滞微分方程 积分微分方程 椭圆型方程 常微分方程 偏微分方程 高阶有限元方法 方法 SCI论文
下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
7
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
下载PDF
Study on High Order Perturbation-based Nonlinear Stochastic Finite Element Method for Dynamic Problems 被引量:1
8
作者 王庆 姚竞争 《Journal of Marine Science and Application》 2010年第4期386-392,共7页
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorith... Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters. 展开更多
关键词 HIGH-ORDER stochastic variational principle nonlinear SFEM perturbation technique
下载PDF
HIGHER-ORDER NODE-BASED TDFEM FOR TRANSIENT ELECTROMAGNETIC ANALYSIS IN RECTANGULAR WAVEGUIDE
9
作者 He Xiaoxiang Tang Wanchu 《Journal of Electronics(China)》 2009年第4期537-542,共6页
Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then... Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then the accuracy, CPU time and memory consumption of the higher-order node-based TDFEM are investigated. The high performance of the presented approach is validated by numerical results of the transient responses of Transverse Electric (TE) field and Transverse Magnetic (TM) field in a rectangular waveguide. 展开更多
关键词 Time Domain Finite Element Method (TDFEM) Higher-order basis Computational ElectroMagnetism (CEM)
下载PDF
High accuracy nonconforming finite elements for fourth order problems 被引量:5
10
作者 WANG Ming ZU PengHe ZHANG Shuo 《Science China Mathematics》 SCIE 2012年第10期2183-2192,共10页
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc... The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods. 展开更多
关键词 fourth order problem nonconforming finite element high accuracy arbitrary dimensions
原文传递
On the use of the discontinuous Galerkin method for numerical simulation of two-dimensional compressible turbulence with shocks 被引量:5
11
作者 YU Jian YAN Chao JIANG ZhenHua 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第9期1758-1770,共13页
In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-... In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases.Firstly,the spectral property of the DG method is analyzed using the approximate dispersion relation(ADR)method and compared with typical finite difference methods,which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error.Then several typical test cases relevant to problems of compressible turbulence are simulated,including one-dimensional shock/entropy wave interaction,two-dimensional decaying isotropic turbulence,and two-dimensional temporal mixing layers.Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes.Furthermore,shocks are also well captured using the localized artificial diffusivity method.The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows. 展开更多
关键词 discontinuous Galerkin compressible turbulence shock capturing artificial diffusivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部