期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高阶累量谱的轴承故障诊断 被引量:2
1
作者 黄晋英 潘宏侠 +1 位作者 毕世华 杨喜旺 《火炮发射与控制学报》 北大核心 2007年第2期56-59,共4页
在轴承故障诊断中,故障信号的提取是一个关键问题。实际测得的轴承振动信号一般是非平稳和非高斯分布的信号,信噪比很低,微弱的故障信息往往完全淹没在噪声中,信号特征的提取非常困难。信号的高阶累积量对加性高斯噪声和对称非高斯噪声... 在轴承故障诊断中,故障信号的提取是一个关键问题。实际测得的轴承振动信号一般是非平稳和非高斯分布的信号,信噪比很低,微弱的故障信息往往完全淹没在噪声中,信号特征的提取非常困难。信号的高阶累积量对加性高斯噪声和对称非高斯噪声不敏感,应用在轴承的故障诊断中,可以有效地分离信号与噪声,提高信噪比,增强故障信息。对轴承在不同状态下的振动信号进行对比分析,提取了不同状态下轴承振动信号的功率谱与高阶累量谱(双谱),建立了用于故障诊断的双谱特征向量,并利用BP神经网络进行了故障诊断。分析结果表明,从高阶累积量提取的特征与功率谱相比,对故障特征比较敏感,容易实现智能诊断中的数字特征提取,可有效地区分轴承的故障。 展开更多
关键词 人工智能 高阶累量谱 轴承 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部