文摘研究人脑在不同运动状态下的脑电信息,不仅能够揭示出各种运动状态对于大脑活动的影响,也是工程技术人员设计脑-机接口与神经修复系统的关键技术之一。文章根据脑电信号的μ节律变化,首次将表征时间序列摆动特性的高阶过零分析(Higher Order Crossing,HOC)方法运用于运动状态下的脑电信号的特征提取并结合支持向量机(Support Vector Machine,SVM)对输入的高阶过零特征量进行了有效的分类。将该方法提取的特征量与基于统计学的特征量分别用SVM进行分类,结果表明本方的识别率明显高于基于统计学特征量的方法。说明基于HOC-SVM方法在脑电信号的特征提取与分类中有较强的可行性和实用性。