The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on ...The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic C02 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not sub- stantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. This overview summarizes recent advances in catalytic conversion of CO2 and presents the challenges and future directions in producing value-added fuels.展开更多
文摘The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic C02 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not sub- stantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. This overview summarizes recent advances in catalytic conversion of CO2 and presents the challenges and future directions in producing value-added fuels.