Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) da...Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.展开更多
基金Supported by National Nature Fund and National Civil-Defense Office
文摘Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.