Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8....Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assistant aspect. Some important human activities in this period led to the change of the landscape patterns in this region directly. Some measurements made by government and NGO delayed the converting process partly.展开更多
The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current te...The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current technique of formation evaluation and interpretation used in sedimentary formations face a series of problems and difficulties.In this study,The PCA was used to identify lithology,a multi-mineral model "QAPM" was proposed."Surface effect" must be considered when evaluating saturation.A software "SIMPLE" was developed and was used to deal with the logging data in over 70 wells with good results were achieved.展开更多
Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile...Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.展开更多
Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss....Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.展开更多
Grassland in northern Tibet plays an important role in the eco-security of the Qinghai-Tibet Plateau and the restoration of deserte@and degraded grassland is now a focus for governments. We used remote sensing, simula...Grassland in northern Tibet plays an important role in the eco-security of the Qinghai-Tibet Plateau and the restoration of deserte@and degraded grassland is now a focus for governments. We used remote sensing, simulations and field surveys to analyze the current status, trends and causes of grassland degradation across northern Tibet. We develop several recovery models for degraded grassland based on field experiments in the region. We found that slightly degraded grassland covers 62% and that moderate to severely degraded grassland occupied 15.1% in the Chang Tang Plateau. The amount of degraded alpine steppe increased from 1991, and the amount of area classified as severely degraded increased sharply from 2000. The cause of degraded steppe in northwestern Tibet may be the result of warming and an arid climate; the cause of severe degradation in mid and eastern regions was mainly from overgrazing. Three restoration models are proposed for different levels of degradation: "enclosures" for slightly degraded areas, "enclosures with fertilization" for moderately degraded areas, and "enclosure with oversowing and fertilization" for severely degraded areas.展开更多
基金supported by China Scholarship, the Chinese Academy of Sciences (KSCXI-07, KSCX2-01-09)the Ministry of Science & Technology of China (2004BA606A-05)Sichuan provincial training foundation for Science & Technology leader ,Sichuan youth foundation.
文摘Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assistant aspect. Some important human activities in this period led to the change of the landscape patterns in this region directly. Some measurements made by government and NGO delayed the converting process partly.
基金Supported by National Oil-gas Project : No XQ-2004-07
文摘The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current technique of formation evaluation and interpretation used in sedimentary formations face a series of problems and difficulties.In this study,The PCA was used to identify lithology,a multi-mineral model "QAPM" was proposed."Surface effect" must be considered when evaluating saturation.A software "SIMPLE" was developed and was used to deal with the logging data in over 70 wells with good results were achieved.
基金supported by the“Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues’’of the Chinese Academy of Sciences(Grant No.XDA05060104)
文摘Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.
文摘Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.
基金The Key Technologies Research and Development Program of China (2011BAC09B03)Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA05060700)the‘Western Light’talents training program of Chiese Academy of Sciecnes
文摘Grassland in northern Tibet plays an important role in the eco-security of the Qinghai-Tibet Plateau and the restoration of deserte@and degraded grassland is now a focus for governments. We used remote sensing, simulations and field surveys to analyze the current status, trends and causes of grassland degradation across northern Tibet. We develop several recovery models for degraded grassland based on field experiments in the region. We found that slightly degraded grassland covers 62% and that moderate to severely degraded grassland occupied 15.1% in the Chang Tang Plateau. The amount of degraded alpine steppe increased from 1991, and the amount of area classified as severely degraded increased sharply from 2000. The cause of degraded steppe in northwestern Tibet may be the result of warming and an arid climate; the cause of severe degradation in mid and eastern regions was mainly from overgrazing. Three restoration models are proposed for different levels of degradation: "enclosures" for slightly degraded areas, "enclosures with fertilization" for moderately degraded areas, and "enclosure with oversowing and fertilization" for severely degraded areas.