在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价...在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价减少特征图中的冗余。其次,利用HAG实现高激活性鬼影跨段部分(High Active Ghost Cross Stage Partial,HAG-CSP)连接模块,提升了跨段部分连接网络结构的特征学习能力。再次,利用HAG-CSP对你只需看一次(You Only Look Once,YOLO)模型进行轻量化改造来得到完整的Ghost-YOLO网络,并构造出一个口罩人脸检测器。实验结果表明,本文提出方法在NVIDIA Jetson NX嵌入式设备上,在检测精度优于其他目标检测算法的前提下,对于640×640的图片,实现了24.72 ms每帧的检测速度,并且减少了模型的参数量。展开更多
文摘在嵌入式设备上,由于算力及存储空间的限制,当前的大型高精度目标检测模型的推理速度较低。为此,本文设计了一种轻量化目标检测模型,用于口罩人脸检测。首先,本文设计了一种高激活性鬼影(High Active Ghost,HAG)模块,以轻量的计算代价减少特征图中的冗余。其次,利用HAG实现高激活性鬼影跨段部分(High Active Ghost Cross Stage Partial,HAG-CSP)连接模块,提升了跨段部分连接网络结构的特征学习能力。再次,利用HAG-CSP对你只需看一次(You Only Look Once,YOLO)模型进行轻量化改造来得到完整的Ghost-YOLO网络,并构造出一个口罩人脸检测器。实验结果表明,本文提出方法在NVIDIA Jetson NX嵌入式设备上,在检测精度优于其他目标检测算法的前提下,对于640×640的图片,实现了24.72 ms每帧的检测速度,并且减少了模型的参数量。