This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutu...This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function I between the original data and the surrogate data. We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.展开更多
Stridulatory sound-producing behavior is widespread across catfish families, but some are silent. To understand why, we compared spine morphology and ecotype of silent and vocal clades. We determined vocal ability of ...Stridulatory sound-producing behavior is widespread across catfish families, but some are silent. To understand why, we compared spine morphology and ecotype of silent and vocal clades. We determined vocal ability of laboratory specimens during disturbance behavior. Vocal families had bony (not flexible or segmented) spines, well-developed anterior and/or posterior serrations, and statistically significantly longer spines. We compared morphology of the proximal end of the pectoral spine between vocal and silent species. For vocal taxa, microscopic rounded or bladed ridges or knobs were present on the dorsal process. Most silent species had reduced processes with exclusively smooth, convoluted, or honeycombed surfaces very similar to spine-locking surfaces, or they had novel surfaces (beaded, vacuolated, cobwebbed). Most callichthyids had ridges but many were silent during disturbance. All doradid, most auchenipterid and most mochokid species were vocal and had ridges or knobs. Within the Auchenipteridae, vocal species had spines with greater weight and serration development but not length. Silent auchenipterids had thin, brittle, distally segmented spines with few microscopic serrations on only one margin and a highly reduced dorsal process lacking any known vocal morphology. Silent auchenipterids are derived and pelagic, while all vocal genera are basal and benthopelagic. This is the first phylogenetic evidence for stridulation mechanism loss within catfishes. Phylogenetic mapping of vocal ability, spine condition, and ecotype revealed the repeated presence of silence and vocal taxa, short and long spines, and ecotype shifts within clades. The appearance and loss of vocal behavior and supporting morphologies may have facilitated diversification among catfishes [Current Zoology 56 (1): 73 89 2010].展开更多
The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta metho...The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.展开更多
The assessment of population structure and abundance of fish assemblages associated with artificial reefs(ARs) is an important aspect of AR management.In the present study,we used a DiveOperated Stereo Video(stereo-DO...The assessment of population structure and abundance of fish assemblages associated with artificial reefs(ARs) is an important aspect of AR management.In the present study,we used a DiveOperated Stereo Video(stereo-DOV) technique to assess the population structure and abundance of Sebastes schlegeli associated with two metallic,and three wooden,vessel reefs in Haizhou Bay during 2012 and2013.The study used video systems to obtain length measurements and estimates of abundance.The size composition of S.schlegeli differed among reefs and individuals around vessel reefs were all adults,with total lengths(TL) of >20 cm.Juvenile fish were encountered by divers in a rocky area near the island away from the vessel reefs.The largest individual S.schlegeli(with the highest TL) among five reefs were found around a metallic vessel reef in both 2012 and 2013.TL of S.schlegeli from all reefs increased by an average of 3.2 cm(P<0.05) from 2012 to 2013,with an estimated mean weight increase of 250.4 g(P<0.05).The video survey also indicated a decrease in the biomass of schools near two metallic vessels between the years.Stereo-video technology was found to be suitable for rockfish surveys around the reefs.展开更多
The study is carried out on the effect of drilling noise and vibration on growth of grass carp, Myloparyngodon Piceus, by using cut-fin marking method in situ. Compared with other methods, the method is more appropria...The study is carried out on the effect of drilling noise and vibration on growth of grass carp, Myloparyngodon Piceus, by using cut-fin marking method in situ. Compared with other methods, the method is more appropriate, for its operation is simpler and more data may be obtained under the same condition. The results show that drilling noise and vibration have significant effect on the growth of grass carp. Critical equivalent noise and vibration grade ( Nleq and Vleq ) are about 84.4 dB and 90.2 dB, and the affecting radius is about 8.5 m. The effect of drilling noise and vibration could be influenced by some factors, such as duration of pollution and body weight of grass carp, etc. Grass carp’s growth could rapidly recover after removing drilling noise and vibration, indicating that the drilling noise and vibration do not damage the fish organs and the effect is reversible. Therefore, the effect mechanism may be due to the activating response of non-hearing system.展开更多
We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), ...We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), in the South China Sea. The TS of caged or tethered fish (n=76 total) was measured using a Simrad EY60 portable scientific echosounder at 120 kHz. We evaluated the relationship between TS and total length (TL, cm) for the three species. This is the first attempt to use split-beam acoustics to measure single-fish TS in the South China Sea by Chinese researchers. Our results will improve the accuracy and precision of acoustic abundance estimates of commercially important species and fi.trther the development of underwater acoustic survey techniques in fisheries in the South China Sea.展开更多
A non invasive ultrasonic method is used to detect whether or not the frozen fish has suffered a partial or total accidental thawing. The time of flight and the peak to peak amplitude of the ultrasonic signals backsca...A non invasive ultrasonic method is used to detect whether or not the frozen fish has suffered a partial or total accidental thawing. The time of flight and the peak to peak amplitude of the ultrasonic signals backscattered by fish are recorded during thawing. The comparison of the evolution curves and images corresponding to first and second thawing shows indicators of accidental thawing. The monitoring of thawing process showed that its assessment can be reduced to the measurement of the water content lost by fish. The attempt to replace the original water lost by fish in first thawing is analyzed. The influence of the transducer frequency on fish thawing evaluation is tested.展开更多
An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assembla...An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches.We used a combination of acoustic surveys,gillnet sampling,and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam,before and after the third impoundment of Three Gorges Reservoir(TGR).To conduct a hydroacoustic identification of individual species,we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys.An optimum threshold of target strength of 50 dB re 1 m 2 was defined,and acoustic surveys were purposefully extended to the selected fish assemblages(i.e.,endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling.The relative proportion of fish species in acoustic surveys was allocated based on the composition(%) of the harvest in the gillnet surveys.Geostatistical simulations were likewise used to generate spatial patterns of fish distribution,and to determine the absolute abundance of the selected fish assemblages.We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR,wherein an immediate sharp population decline in the Coreius occurred.Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species,particularly the endemic Coreius species.To determine the factors responsible for the decline,we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.展开更多
Swimbladder disturbance sounds of doradoid catfishes (Doradidae and Aucheniptefidae) demonstrated striking waveform and spectrographic variation. We surveyed sounds of 25 doradoid species in 20 genera comparing thes...Swimbladder disturbance sounds of doradoid catfishes (Doradidae and Aucheniptefidae) demonstrated striking waveform and spectrographic variation. We surveyed sounds of 25 doradoid species in 20 genera comparing these to sounds of four vocal outgroup catfish families. Sounds were either continuous waveforms (lacking interpulses) or pulsed (groups of pulses repeated at fixed temporal intervals). This is the first evidence for swimbladder calls with fixed interpulse patterns in catfishes. Vocal mechanism components that were similar between doradids and auchenipterids included: swimbladder shape, swimbladder dimensions and sonic muscle-somatic index. Morphological traits that showed variation among taxa and were evaluated for po- tential correlates of call diversity are: 1) diverticula (marginal outpocketings of the swimbladder with no connection to inner ear) and 2) elastic spring apparatus Mtillerian rami (ESA-Mr). Within the doradid subfamilies and within the Auchenipteridae most species differed significantly in dominant frequency with frequency ranges overlapping to some extent for most. Doradid swim- bladder diverticula did not explain dominant frequency variation within the doradoid superfamily. Some doradids with conical ESA-Mr had the highest dominant frequency sounds. Auchenipterids included both relatively lower and higher dominant fre- quency sound producers but lacked diverticula and had discoidal ESA-Mr. Comparing a phylogeny of doradoid genera with out- group taxa, we infer that complex diverticula and conical ESA-Mr are derived characters within the Doradidae. Species repre- senting outgroup families produced either continuous lower dominant frequency sounds (aspredinids, mochokids and pseudopimelodids) or pulsed higher dominant frequency sounds (pimelodids) [Current Zoology 58 (1): 171-188, 2012].展开更多
Understanding the movement of animals is fundamental to population and community ecology. Historically, it has been difficult to quantify movement patterns of most fishes, but technological advances in acoustic teleme...Understanding the movement of animals is fundamental to population and community ecology. Historically, it has been difficult to quantify movement patterns of most fishes, but technological advances in acoustic telemetry have increased our abilities to monitor their movement. In this study, we combined small-scale active acoustic tracking with large-scale passive acoustic monitoring to develop an empirical movement model for sixgill sharks in Puget Sound, WA, USA. We began by testing whether a correlated random walk model described the daily movement of sixgills; however, the model failed to capture home-ranging behavior. We added this behavior and used the resultant model (a biased random walk model) to determine whether daily movement patterns are able to explain large-scale seasonal movement. The daily model did not explain the larger-scale pat- terns of movement observed in the passive monitoring data. In order to create the large-scale patterns, sixgills must have per- formed behaviors (large, fast directed movements) that were unobserved during small-scale active tracking. In addition, seasonal shifts in location were not captured by the dally model. We added these 'unobserved' behaviors to the model and were able to capture large-scale seasonal movement of sixgill sharks over 150 days. The development of empirical models of movement al- lows researchers to develop hypotheses and test mechanisms responsible for a species movement behavior and spatial distribution. This knowledge will increase our ability to successfully manage species of concern [Current Zoology 58 (1): 103-115, 2012].展开更多
文摘This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function I between the original data and the surrogate data. We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.
基金the Barbara-Sussman FundSigma-Xi+1 种基金SUNY-ESFsupported by MIMH training grant 5-T32-MH15793
文摘Stridulatory sound-producing behavior is widespread across catfish families, but some are silent. To understand why, we compared spine morphology and ecotype of silent and vocal clades. We determined vocal ability of laboratory specimens during disturbance behavior. Vocal families had bony (not flexible or segmented) spines, well-developed anterior and/or posterior serrations, and statistically significantly longer spines. We compared morphology of the proximal end of the pectoral spine between vocal and silent species. For vocal taxa, microscopic rounded or bladed ridges or knobs were present on the dorsal process. Most silent species had reduced processes with exclusively smooth, convoluted, or honeycombed surfaces very similar to spine-locking surfaces, or they had novel surfaces (beaded, vacuolated, cobwebbed). Most callichthyids had ridges but many were silent during disturbance. All doradid, most auchenipterid and most mochokid species were vocal and had ridges or knobs. Within the Auchenipteridae, vocal species had spines with greater weight and serration development but not length. Silent auchenipterids had thin, brittle, distally segmented spines with few microscopic serrations on only one margin and a highly reduced dorsal process lacking any known vocal morphology. Silent auchenipterids are derived and pelagic, while all vocal genera are basal and benthopelagic. This is the first phylogenetic evidence for stridulation mechanism loss within catfishes. Phylogenetic mapping of vocal ability, spine condition, and ecotype revealed the repeated presence of silence and vocal taxa, short and long spines, and ecotype shifts within clades. The appearance and loss of vocal behavior and supporting morphologies may have facilitated diversification among catfishes [Current Zoology 56 (1): 73 89 2010].
文摘The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.
基金Supported by the National Natural Science Foundation of China(NSFC)-Shandong Joint Fund for Marine Science Research Centers(No.U1406403)the National Key Technology Research and Development Program of China(No.2011BAD13B02)+1 种基金the National Marine Public Welfare Research Project(No.201205023)the Key Laboratory of Marine Ecology and Environmental Science and Engineering,State Oceanic Administration(No.MESE-2013-05)
文摘The assessment of population structure and abundance of fish assemblages associated with artificial reefs(ARs) is an important aspect of AR management.In the present study,we used a DiveOperated Stereo Video(stereo-DOV) technique to assess the population structure and abundance of Sebastes schlegeli associated with two metallic,and three wooden,vessel reefs in Haizhou Bay during 2012 and2013.The study used video systems to obtain length measurements and estimates of abundance.The size composition of S.schlegeli differed among reefs and individuals around vessel reefs were all adults,with total lengths(TL) of >20 cm.Juvenile fish were encountered by divers in a rocky area near the island away from the vessel reefs.The largest individual S.schlegeli(with the highest TL) among five reefs were found around a metallic vessel reef in both 2012 and 2013.TL of S.schlegeli from all reefs increased by an average of 3.2 cm(P<0.05) from 2012 to 2013,with an estimated mean weight increase of 250.4 g(P<0.05).The video survey also indicated a decrease in the biomass of schools near two metallic vessels between the years.Stereo-video technology was found to be suitable for rockfish surveys around the reefs.
文摘The study is carried out on the effect of drilling noise and vibration on growth of grass carp, Myloparyngodon Piceus, by using cut-fin marking method in situ. Compared with other methods, the method is more appropriate, for its operation is simpler and more data may be obtained under the same condition. The results show that drilling noise and vibration have significant effect on the growth of grass carp. Critical equivalent noise and vibration grade ( Nleq and Vleq ) are about 84.4 dB and 90.2 dB, and the affecting radius is about 8.5 m. The effect of drilling noise and vibration could be influenced by some factors, such as duration of pollution and body weight of grass carp, etc. Grass carp’s growth could rapidly recover after removing drilling noise and vibration, indicating that the drilling noise and vibration do not damage the fish organs and the effect is reversible. Therefore, the effect mechanism may be due to the activating response of non-hearing system.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA100303)the Science and Technology Project of Guangdong Province, China (No.2007B020708001)+1 种基金the Special Funds for Operating Expenses of Basic Researches in the Central Nonprofit Scientific Research Institutes (Nos.2008TS01, 2007ZD03)the Natural Science Foundation of Guangdong Province, China (No. 04001263)
文摘We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), in the South China Sea. The TS of caged or tethered fish (n=76 total) was measured using a Simrad EY60 portable scientific echosounder at 120 kHz. We evaluated the relationship between TS and total length (TL, cm) for the three species. This is the first attempt to use split-beam acoustics to measure single-fish TS in the South China Sea by Chinese researchers. Our results will improve the accuracy and precision of acoustic abundance estimates of commercially important species and fi.trther the development of underwater acoustic survey techniques in fisheries in the South China Sea.
文摘A non invasive ultrasonic method is used to detect whether or not the frozen fish has suffered a partial or total accidental thawing. The time of flight and the peak to peak amplitude of the ultrasonic signals backscattered by fish are recorded during thawing. The comparison of the evolution curves and images corresponding to first and second thawing shows indicators of accidental thawing. The monitoring of thawing process showed that its assessment can be reduced to the measurement of the water content lost by fish. The attempt to replace the original water lost by fish in first thawing is analyzed. The influence of the transducer frequency on fish thawing evaluation is tested.
基金supported by the National Natural Science Foundation of China (Grant No. 51079089)Key Project of the National Twelfth-Five Year Research Program of China (Grant No.2012BAC06B04)the Ecological and Environmental Monitoring Programs of China Three Gorges Project Corporation (Grant Nos. 241202004and SXSN/2726)
文摘An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species.However,information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches.We used a combination of acoustic surveys,gillnet sampling,and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam,before and after the third impoundment of Three Gorges Reservoir(TGR).To conduct a hydroacoustic identification of individual species,we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys.An optimum threshold of target strength of 50 dB re 1 m 2 was defined,and acoustic surveys were purposefully extended to the selected fish assemblages(i.e.,endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling.The relative proportion of fish species in acoustic surveys was allocated based on the composition(%) of the harvest in the gillnet surveys.Geostatistical simulations were likewise used to generate spatial patterns of fish distribution,and to determine the absolute abundance of the selected fish assemblages.We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR,wherein an immediate sharp population decline in the Coreius occurred.Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species,particularly the endemic Coreius species.To determine the factors responsible for the decline,we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.
文摘Swimbladder disturbance sounds of doradoid catfishes (Doradidae and Aucheniptefidae) demonstrated striking waveform and spectrographic variation. We surveyed sounds of 25 doradoid species in 20 genera comparing these to sounds of four vocal outgroup catfish families. Sounds were either continuous waveforms (lacking interpulses) or pulsed (groups of pulses repeated at fixed temporal intervals). This is the first evidence for swimbladder calls with fixed interpulse patterns in catfishes. Vocal mechanism components that were similar between doradids and auchenipterids included: swimbladder shape, swimbladder dimensions and sonic muscle-somatic index. Morphological traits that showed variation among taxa and were evaluated for po- tential correlates of call diversity are: 1) diverticula (marginal outpocketings of the swimbladder with no connection to inner ear) and 2) elastic spring apparatus Mtillerian rami (ESA-Mr). Within the doradid subfamilies and within the Auchenipteridae most species differed significantly in dominant frequency with frequency ranges overlapping to some extent for most. Doradid swim- bladder diverticula did not explain dominant frequency variation within the doradoid superfamily. Some doradids with conical ESA-Mr had the highest dominant frequency sounds. Auchenipterids included both relatively lower and higher dominant fre- quency sound producers but lacked diverticula and had discoidal ESA-Mr. Comparing a phylogeny of doradoid genera with out- group taxa, we infer that complex diverticula and conical ESA-Mr are derived characters within the Doradidae. Species repre- senting outgroup families produced either continuous lower dominant frequency sounds (aspredinids, mochokids and pseudopimelodids) or pulsed higher dominant frequency sounds (pimelodids) [Current Zoology 58 (1): 171-188, 2012].
文摘Understanding the movement of animals is fundamental to population and community ecology. Historically, it has been difficult to quantify movement patterns of most fishes, but technological advances in acoustic telemetry have increased our abilities to monitor their movement. In this study, we combined small-scale active acoustic tracking with large-scale passive acoustic monitoring to develop an empirical movement model for sixgill sharks in Puget Sound, WA, USA. We began by testing whether a correlated random walk model described the daily movement of sixgills; however, the model failed to capture home-ranging behavior. We added this behavior and used the resultant model (a biased random walk model) to determine whether daily movement patterns are able to explain large-scale seasonal movement. The daily model did not explain the larger-scale pat- terns of movement observed in the passive monitoring data. In order to create the large-scale patterns, sixgills must have per- formed behaviors (large, fast directed movements) that were unobserved during small-scale active tracking. In addition, seasonal shifts in location were not captured by the dally model. We added these 'unobserved' behaviors to the model and were able to capture large-scale seasonal movement of sixgill sharks over 150 days. The development of empirical models of movement al- lows researchers to develop hypotheses and test mechanisms responsible for a species movement behavior and spatial distribution. This knowledge will increase our ability to successfully manage species of concern [Current Zoology 58 (1): 103-115, 2012].