期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于L(2+1)D的养殖鱼类摄食状态下活跃程度识别方法
1
作者
唐晓萌
缪新颖
《现代电子技术》
北大核心
2024年第8期155-159,共5页
鱼类行为的活跃程度是鱼类行为研究中的关键指标,可为水产养殖过程提供有用的基础数据。然而现有的计算机视觉方法在活跃程度识别的应用中依赖于大量存储和计算资源,在实际场景中实用性较差。为了解决这些问题,提出一种鱼类摄食活动识...
鱼类行为的活跃程度是鱼类行为研究中的关键指标,可为水产养殖过程提供有用的基础数据。然而现有的计算机视觉方法在活跃程度识别的应用中依赖于大量存储和计算资源,在实际场景中实用性较差。为了解决这些问题,提出一种鱼类摄食活动识别模型——L(2+1)D,将3D卷积分解为2D大空间卷积和1D时间卷积,使用少量的大型卷积核来增加感受野,实现更强大的特征提取效果。将空间卷积和时间卷积串联成用于时空特征学习的时空模块,并减少时空模块数量,达到减少参数数量的同时提高准确性的效果。实验结果表明,所提方法可以在实际水产养殖中准确识别鱼群的活跃程度,准确率可达到65.02%,并更适合部署在资源受限的设备或现场。
展开更多
关键词
鱼类活跃程度
卷积神经网络
图像预处理
特征提取
时空特征学习
行为量化
下载PDF
职称材料
题名
基于L(2+1)D的养殖鱼类摄食状态下活跃程度识别方法
1
作者
唐晓萌
缪新颖
机构
大连海洋大学信息工程学院
设施渔业教育部重点实验室
出处
《现代电子技术》
北大核心
2024年第8期155-159,共5页
基金
设施渔业教育部重点实验室基金。
文摘
鱼类行为的活跃程度是鱼类行为研究中的关键指标,可为水产养殖过程提供有用的基础数据。然而现有的计算机视觉方法在活跃程度识别的应用中依赖于大量存储和计算资源,在实际场景中实用性较差。为了解决这些问题,提出一种鱼类摄食活动识别模型——L(2+1)D,将3D卷积分解为2D大空间卷积和1D时间卷积,使用少量的大型卷积核来增加感受野,实现更强大的特征提取效果。将空间卷积和时间卷积串联成用于时空特征学习的时空模块,并减少时空模块数量,达到减少参数数量的同时提高准确性的效果。实验结果表明,所提方法可以在实际水产养殖中准确识别鱼群的活跃程度,准确率可达到65.02%,并更适合部署在资源受限的设备或现场。
关键词
鱼类活跃程度
卷积神经网络
图像预处理
特征提取
时空特征学习
行为量化
Keywords
fish activity level
convolutional neural network
image preprocessing
feature extraction
spatiotemporal features learning
behavioral quantification
分类号
TN957.52-34 [电子电信—信号与信息处理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于L(2+1)D的养殖鱼类摄食状态下活跃程度识别方法
唐晓萌
缪新颖
《现代电子技术》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部