Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual constr...Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo(MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo(MC) method. Additionally, a hierarchical simulation model coupling critical path method(CPM) and a cycle operation network(CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology.展开更多
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regul...We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.展开更多
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the National Natural Science Foundation of China(Grant Nos.9121530151439005)
文摘Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo(MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo(MC) method. Additionally, a hierarchical simulation model coupling critical path method(CPM) and a cycle operation network(CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology.
基金supported by National Institute on Drug Abuse(Grant Nos.R21-DA024260 and P50-DA10075)National Natural Science Foundation of China(Grant Nos.11071077,11371236,11028103,11071022 and 11028103)+2 种基金Innovation Program of Shanghai Municipal Education CommissionPujiang Project of Science and Technology Commission of Shanghai Municipality(Grant No.12PJ1403200)Program for New Century Excellent Talents,Ministry of Education of China(Grant No.NCET-12-0901)
文摘We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.