The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with ...The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.展开更多
This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia...This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.展开更多
In this work, the analysis of robust stability and design of robust H∞ output feedback controllers for a class of Lur'e systems with both time-delays and parameter uncertainties were studied. A robust H∞ output ...In this work, the analysis of robust stability and design of robust H∞ output feedback controllers for a class of Lur'e systems with both time-delays and parameter uncertainties were studied. A robust H∞ output feedback controller based on Linear Matrix Inequalities (LMIs) was developed to guarantee the robust stability and H∞ performance of the resultant closed-loop system. The presented design approach is based on the application of descriptor model transformation and Park's inequality for the bounding of cross terms and is expected to be less conservative compared to reported design methods. Finally, illustrative examples are advanced to demonstrate the superiority of the obtained method.展开更多
This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based o...This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based on the guaranteed cost theory, and a sufficient condition for the existence is given in terms of linear matrix inequality (LMI). Secondly, a continuous sliding mode controller is proposed to handle the nonlinear, time - varying behavior of the vehicles. Simulation results demonstrate that the system responds rapidly and has good robust stability. Therefore, it provides theoretical references for further study on control problems of supercavitating vehicles.展开更多
In view of the problem that the multimodal transport network is vulnerable to attack and faces the risk of cascading failure,three low polarization linking strategies considering the characteristics of the multimodal ...In view of the problem that the multimodal transport network is vulnerable to attack and faces the risk of cascading failure,three low polarization linking strategies considering the characteristics of the multimodal transport network are proposed to optimize network robustness.They are the low polarization linking strategy based on the degree of nodes(D_LPLS),low polarization linking strategy based on the betweenness of nodes(B_LPLS),and low polarization linking strategy based on the closeness of nodes(C_LPLS).The multimodal transport network in the Sichuan-Tibet region is analyzed,and the optimization effects of these three strategies are compared with the random linking strategy under random attacks and intentional attacks.The results show that C_LPLS can effectively optimize the robustness of the network.Under random attacks,the advantages of C_LPLS are obvious when the ratio of increased links is less than 15%,but it has fewer advantages compared with B_LPLS when the ratio of increased links is 15%to 30%.Under intentional attacks,as the ratio of increased links goes up,the advantages of C_LPLS become more obvious.Therefore,the increase of links by C_LPLS is conducive to the risk control of the network,which can provide theoretical support for the optimization of future multimodal transport network structures.展开更多
Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization ...Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.展开更多
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive ti...A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.展开更多
The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is ...The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.展开更多
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
In this paper, a new stability criterion for positive-coefficient polynomial is given. Then the problem about the robust stability for an interval-polynomial is investigated and some new stability criterions for inter...In this paper, a new stability criterion for positive-coefficient polynomial is given. Then the problem about the robust stability for an interval-polynomial is investigated and some new stability criterions for interval-polynomials are obtained. The coefficient perturbation bound for stable interval polynomial can be completely determined by the coefficients of polynomial (1.1). So the conclusions of this paper are simple and useful. Several examples in the end of this paper show that the criterions given in this paper are effective.展开更多
Research on Lu Xun is never simply the analysis of an individual writer, but constitutes an understanding of the cultural attributes represented by Lu Xun himself and his writings. Likewise, the evaluation of research...Research on Lu Xun is never simply the analysis of an individual writer, but constitutes an understanding of the cultural attributes represented by Lu Xun himself and his writings. Likewise, the evaluation of research on Lu Xun is never a simple evaluation of academic history, but rather a social evaluation associated with the value orientations of those times. At present, with the return of academic logic and the growing tendency toward private research, a noteworthy divergence of standpoints and evaluations of Lu Xun research has emerged. At the same time, as a prominent discipline that has been over-interpreted, research on Lu Xun is demonstrating a tendency toward redundancy and triviality. Three fundamental paradigms are commonly employed in research on Lu Xun: historical research that attempts to explore historical materials; academic research that focuses on knowledge interpretation and aesthetic evaluation; and contemporary research that pursues the contemporary meaning and values of Lu Xun's ideas. Each paradigm offers an insight into and understanding of Lu Xun's rich and complex spiritual world; each presents a paradox of one kind or the other; and each performs different value functions.展开更多
Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth re...Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth regions.This study presents an extension of our previous research which confirmed that adaptively adjusting parameter C can indeed overcome the inadequacy of the usage of a constant small value.Cmin is applied near a discontinuity while Cmax is used elsewhere and they are switched according to the variation of the local flow-field property.This study provides the reference values of the adaptive parameter C of WENOCU4 and systematically evaluates the comprehensive performance of three different switches(labeled as the binary,continuous,and hyperbolic tangent switches,respectively)based on an optimized efficient WENOCU4 scheme(labeled as EWENOCU4).Varieties of 1D scalar equations,empirical dispersion relation analysis,and multi-dimensional benchmark cases of Euler equations are analyzed.Generally,the dissipation and dispersion properties of these three switches are similar.Especially,employing the binary switch,EWENOCU4 achieves the best comprehensive properties.Specifically,the binary switch can efficiently filter more misidentifications in smooth regions than others do,particularly for the cases of 1 D scalar equations and Euler equations.Also,the computational efficiency of the binary switch is superior to that of the hyperbolic tangent switch.Moreover,the optimized scheme exhibits high-resolution spectral properties in the wavenumber space.Therefore,employing the binary switch is a more cost-effective improvement for schemes and is particularly suitable for the simulation of complex shock/turbulence interaction.This study provides useful guidance for the reference values of parameter C and the evaluation of adaptive switches.展开更多
文摘The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.
基金The Major Program of National Natural Science Foundation of China(No.11190015)the National Natural Science Foundation of China(No.61374006)
文摘This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.
基金Project supported by the National Outstanding Young Science Foundation of China (No. 60025308)Teach and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, China
文摘In this work, the analysis of robust stability and design of robust H∞ output feedback controllers for a class of Lur'e systems with both time-delays and parameter uncertainties were studied. A robust H∞ output feedback controller based on Linear Matrix Inequalities (LMIs) was developed to guarantee the robust stability and H∞ performance of the resultant closed-loop system. The presented design approach is based on the application of descriptor model transformation and Park's inequality for the bounding of cross terms and is expected to be less conservative compared to reported design methods. Finally, illustrative examples are advanced to demonstrate the superiority of the obtained method.
基金Supported by the National Natural Science Foundation of China( No. 10802026) and Research Fund for the Doctoral Program of Higher Education of China ( No. 200802130003 ).
文摘This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based on the guaranteed cost theory, and a sufficient condition for the existence is given in terms of linear matrix inequality (LMI). Secondly, a continuous sliding mode controller is proposed to handle the nonlinear, time - varying behavior of the vehicles. Simulation results demonstrate that the system responds rapidly and has good robust stability. Therefore, it provides theoretical references for further study on control problems of supercavitating vehicles.
基金The National Key Research and Development Program of China(No.2018YFB1601400)。
文摘In view of the problem that the multimodal transport network is vulnerable to attack and faces the risk of cascading failure,three low polarization linking strategies considering the characteristics of the multimodal transport network are proposed to optimize network robustness.They are the low polarization linking strategy based on the degree of nodes(D_LPLS),low polarization linking strategy based on the betweenness of nodes(B_LPLS),and low polarization linking strategy based on the closeness of nodes(C_LPLS).The multimodal transport network in the Sichuan-Tibet region is analyzed,and the optimization effects of these three strategies are compared with the random linking strategy under random attacks and intentional attacks.The results show that C_LPLS can effectively optimize the robustness of the network.Under random attacks,the advantages of C_LPLS are obvious when the ratio of increased links is less than 15%,but it has fewer advantages compared with B_LPLS when the ratio of increased links is 15%to 30%.Under intentional attacks,as the ratio of increased links goes up,the advantages of C_LPLS become more obvious.Therefore,the increase of links by C_LPLS is conducive to the risk control of the network,which can provide theoretical support for the optimization of future multimodal transport network structures.
基金Project(61374054)supported by the National Natural Science Foundation of ChinaProject(2013JQ8038)supported by the Shanxi Provincal Natural Science Foundation Research Projection,China
文摘Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.
基金Projects(90916004,60804004)supported by the National Natural Science Foundation of ChinaProject supported by the Program for the New Century,ChinaProject(NCET-09-0590)supported by Excellent Talents in University,China
文摘A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60574001)Program for New Century Excellent Talents in University(Grant No.NCET-05-0485)
文摘The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.
基金Supported by the Fund of China Education Ministry.
文摘In this paper, a new stability criterion for positive-coefficient polynomial is given. Then the problem about the robust stability for an interval-polynomial is investigated and some new stability criterions for interval-polynomials are obtained. The coefficient perturbation bound for stable interval polynomial can be completely determined by the coefficients of polynomial (1.1). So the conclusions of this paper are simple and useful. Several examples in the end of this paper show that the criterions given in this paper are effective.
文摘Research on Lu Xun is never simply the analysis of an individual writer, but constitutes an understanding of the cultural attributes represented by Lu Xun himself and his writings. Likewise, the evaluation of research on Lu Xun is never a simple evaluation of academic history, but rather a social evaluation associated with the value orientations of those times. At present, with the return of academic logic and the growing tendency toward private research, a noteworthy divergence of standpoints and evaluations of Lu Xun research has emerged. At the same time, as a prominent discipline that has been over-interpreted, research on Lu Xun is demonstrating a tendency toward redundancy and triviality. Three fundamental paradigms are commonly employed in research on Lu Xun: historical research that attempts to explore historical materials; academic research that focuses on knowledge interpretation and aesthetic evaluation; and contemporary research that pursues the contemporary meaning and values of Lu Xun's ideas. Each paradigm offers an insight into and understanding of Lu Xun's rich and complex spiritual world; each presents a paradox of one kind or the other; and each performs different value functions.
基金Project supported by the National Natural Science Foundation of China(Nos.11522222,11925207,and 11472305)the Scientific Research Plan of National University of Defense Technology in 2019(No.ZK19-02)the Postgraduate Scientific Research Innovation Project of Hunan Province(Nos.CX20200008 and CX20200084),China。
文摘Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth regions.This study presents an extension of our previous research which confirmed that adaptively adjusting parameter C can indeed overcome the inadequacy of the usage of a constant small value.Cmin is applied near a discontinuity while Cmax is used elsewhere and they are switched according to the variation of the local flow-field property.This study provides the reference values of the adaptive parameter C of WENOCU4 and systematically evaluates the comprehensive performance of three different switches(labeled as the binary,continuous,and hyperbolic tangent switches,respectively)based on an optimized efficient WENOCU4 scheme(labeled as EWENOCU4).Varieties of 1D scalar equations,empirical dispersion relation analysis,and multi-dimensional benchmark cases of Euler equations are analyzed.Generally,the dissipation and dispersion properties of these three switches are similar.Especially,employing the binary switch,EWENOCU4 achieves the best comprehensive properties.Specifically,the binary switch can efficiently filter more misidentifications in smooth regions than others do,particularly for the cases of 1 D scalar equations and Euler equations.Also,the computational efficiency of the binary switch is superior to that of the hyperbolic tangent switch.Moreover,the optimized scheme exhibits high-resolution spectral properties in the wavenumber space.Therefore,employing the binary switch is a more cost-effective improvement for schemes and is particularly suitable for the simulation of complex shock/turbulence interaction.This study provides useful guidance for the reference values of parameter C and the evaluation of adaptive switches.