期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于减量学习的鲁棒稀疏最小二乘支持向量回归机 被引量:2
1
作者 高润鹏 伞冶 朱奕 《探测与控制学报》 CSCD 北大核心 2011年第6期14-21,26,共9页
针对最小二乘支持向量回归机缺乏鲁棒性和稀疏性,提出采用自下而上的学习方式和循环逐一删除样本框架的鲁棒稀疏算法。为增强鲁棒性,采用基于留一误差的鲁棒"3σ"准则检测并删除异常样本。为提高稀疏性,采用基于最小绝对留一... 针对最小二乘支持向量回归机缺乏鲁棒性和稀疏性,提出采用自下而上的学习方式和循环逐一删除样本框架的鲁棒稀疏算法。为增强鲁棒性,采用基于留一误差的鲁棒"3σ"准则检测并删除异常样本。为提高稀疏性,采用基于最小绝对留一误差的剪枝策略删除不重要样本。为降低计算量,采用快速留一误差和减量学习更新模型。实验结果表明:新算法有较强的鲁棒性,同时在模型泛化性能略有下降的情况下,支持向量数目大幅减少。 展开更多
关键词 最小二乘支持向量回归机 稀疏性 鲁棒“3σ”准则 留一误差 减量学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部