期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应表面模型的概率视频跟踪算法
1
作者 李安平 敬忠良 胡士强 《控制与决策》 EI CSCD 北大核心 2007年第1期53-58,共6页
提出一种鲁棒自适应表面模型,该模型中每个像素值的变化过程由一混合高斯分布描述.为了适应目标表面的变化,这些高斯参数在跟踪期间通过在线的EM算法自适应更新;在估计目标状态时,采用了粒子滤波算法,设计了基于自适应表面模型的观测模... 提出一种鲁棒自适应表面模型,该模型中每个像素值的变化过程由一混合高斯分布描述.为了适应目标表面的变化,这些高斯参数在跟踪期间通过在线的EM算法自适应更新;在估计目标状态时,采用了粒子滤波算法,设计了基于自适应表面模型的观测模型;在处理遮挡时,采用了一种鲁棒估计技术.多组试验结果表明,该算法对光照变化、姿态变化、部分或完全遮挡下的跟踪具有较强的鲁棒性. 展开更多
关键词 混合高斯模型 自适应表面模型 在线EM算法 鲁棒估计技术 粒子滤波
下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
2
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部