This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in ...This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in the COI (center of inertia) coordinate system. The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables. Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI (linear matrix inequality) based robust control theory. The proposed controller does not rely on any preselected system operating point, adapts to variations of network parameters and system operation conditions, and assures regulation accuracy of generator terminal voltages. Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller, and only terminal voltages, rotor speeds, active and reactive power outputs of generators are required. In addition, the proposed controller not only takes into account time delays of remote signals, but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU (phase measurement unit). Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively, and simulation results illustrate high performance of the proposed controller.展开更多
This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is ...This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, μ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the μ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H∞ suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop.展开更多
文摘This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in the COI (center of inertia) coordinate system. The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables. Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI (linear matrix inequality) based robust control theory. The proposed controller does not rely on any preselected system operating point, adapts to variations of network parameters and system operation conditions, and assures regulation accuracy of generator terminal voltages. Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller, and only terminal voltages, rotor speeds, active and reactive power outputs of generators are required. In addition, the proposed controller not only takes into account time delays of remote signals, but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU (phase measurement unit). Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively, and simulation results illustrate high performance of the proposed controller.
基金supported by the Canada Foundation for Innovation (CFI) and the National Natural Science Foundation of China (Grant No.50875257)
文摘This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, μ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the μ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H∞ suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop.