期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双图正则化的自适应多模态鲁棒特征学习 被引量:2
1
作者 赵亮 张洁 陈志奎 《计算机科学》 CSCD 北大核心 2022年第4期124-133,共10页
大数据时代,海量多模态数据的广泛存在使得数据特点发生了巨大变化:数据种类繁多且价值密度低。不同种类的数据既独立发挥作用又彼此相辅相成,发现多模态数据背后的隐藏价值成为大数据挖掘的关键。文中主要针对多模态数据的低质性问题,... 大数据时代,海量多模态数据的广泛存在使得数据特点发生了巨大变化:数据种类繁多且价值密度低。不同种类的数据既独立发挥作用又彼此相辅相成,发现多模态数据背后的隐藏价值成为大数据挖掘的关键。文中主要针对多模态数据的低质性问题,提出一种新的多模态鲁棒特征学习方法。该方法通过引入模态误差矩阵来有效降低噪声数据对融合结果的影响,使算法具备一定的鲁棒性。此外,设计数据流形与特征流形双图正则化机制,描述模态数据的双重空间结构,确保融合过程中数据的稳定性。在6个实际的多模态数据集上,基于准确性(Accuracy,ACC)、标准化互信息(Normalized Mutual Information,NMI)以及纯度(Purity,PUR)3种评价指标,将其与近年来的多种经典算法进行比较。实验结果显示,所提方法优于所有对比算法,尤其在含有大量噪声信息的网络数据集Webkb上表现突出,其ACC和NMI指标相比基线算法提升约10%,表明该算法实现了对多模态大数据共享特征的准确学习。 展开更多
关键词 多模态数据 鲁棒特征学习 噪声数据 双图正则化 自适应权重
下载PDF
基于鲁棒子空间学习的粒子滤波跟踪算法 被引量:2
2
作者 陆文 蔡敬菊 《计算机应用研究》 CSCD 北大核心 2011年第9期3579-3584,共6页
线性子空间模型能够有效地描述目标表面受到光照和姿势变化的情况,然而大多数基于子空间表面模型的目标跟踪算法是在跟踪之前通过训练不同光照和姿势下目标的观测图像,得到一组特征基,并用这组特征基表示不同时刻目标表面变化,一旦训练... 线性子空间模型能够有效地描述目标表面受到光照和姿势变化的情况,然而大多数基于子空间表面模型的目标跟踪算法是在跟踪之前通过训练不同光照和姿势下目标的观测图像,得到一组特征基,并用这组特征基表示不同时刻目标表面变化,一旦训练完成之后,特征基就保持不变,不能在线更新。采用增量子空间学习的方法来构建目标表面的特征基,该特征基能够在线适应目标表面的变化。另一方面,传统的子空间学习方法是基于最小二乘重构误差,该方法容易受到异常测量数据的影响,为此采用鲁棒的子空间学习方法来降低异常测量数据对特征空间更新的影响。最后将鲁棒特征基表面模型结合状态推理框架中的粒子滤波算法来传播目标的运动参数,达到准确跟踪的目的。 展开更多
关键词 目标跟踪 粒子滤波 增量子空间学习 特征空间学习
下载PDF
基于域对抗学习的可泛化虚假人脸检测方法研究 被引量:7
3
作者 翁泽佳 陈静静 姜育刚 《计算机研究与发展》 EI CSCD 北大核心 2021年第7期1476-1489,共14页
随着生成式对抗网络(generative adversarial networks,GAN)的快速发展,虚假人脸生成技术取得了显著进展.为了降低以假乱真的人脸生成技术给社会带来的危害,虚假人脸鉴别成为一个非常重要的课题,吸引了国内外研究者的广泛关注.然而,目... 随着生成式对抗网络(generative adversarial networks,GAN)的快速发展,虚假人脸生成技术取得了显著进展.为了降低以假乱真的人脸生成技术给社会带来的危害,虚假人脸鉴别成为一个非常重要的课题,吸引了国内外研究者的广泛关注.然而,目前虚假人脸鉴别的研究工作相对较少,仍然有许多问题需要被解决.其中如何提升鉴别模型的迁移泛化能力是至关重要的问题,也是虚假人脸检测任务能否实际投入使用的关键所在.如何提升虚假人脸鉴别方法的泛化能力,即做到在没有见过的生成方法产生的数据上仍然准确有效非常重要.对此,提出了基于域对抗学习的可泛化虚假人脸检测模型,通过引入领域对抗分支,弱化特征提取器对于特定生成模型非鲁棒性特征的提取,模型能够抽取鲁棒性更强、泛化能力更高的特征,从而在没有见过的生成方法产生的虚假人脸图片上具有更好的鉴别表现.实验结果表明:所提出的方法能够提升鉴别模型的泛化能力,显著提升虚假人脸鉴别模型在未知生成模型产生的虚假图像上的性能. 展开更多
关键词 虚假人脸检测 域自适应 域对抗学习 鲁棒特征学习 泛化性
下载PDF
Whisper intelligibility enhancement based on noise robust feature and SVM 被引量:2
4
作者 周健 赵力 +1 位作者 梁瑞宇 方贤勇 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期261-265,共5页
A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize... A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize the enhanced whisper. A novel noise robust feature called Gammatone feature cosine coefficients (GFCCs) extracted by an auditory periphery model is derived and used for the binary mask estimation. The intelligibility performance of the proposed method is evaluated and compared with the traditional speech enhancement methods. Objective and subjective evaluation results indicate that the proposed method can effectively improve the intelligibility of whispered speech which is contaminated by noise. Compared with the power subtract algorithm and the log-MMSE algorithm, both of which do not improve the intelligibility in lower signal-to-noise ratio (SNR) environments, the proposed method has good performance in improving the intelligibility of noisy whisper. Additionally, the intelligibility of the enhanced whispered speech using the proposed method also outperforms that of the corresponding unprocessed noisy whispered speech. 展开更多
关键词 whispered speech intelligibility enhancement noise robust feature machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部