提出一种新的鲁棒核模糊C-均值聚类算法。将连通核与AFCM(Alternative fuzzy C-means)聚类算法相结合,给出基于连通核的核AFCM:CRKFCM(Connectivity kernel based robust fuzzy C-means)。CRKFCM一方面有效地利用了连通核,可以对任意形...提出一种新的鲁棒核模糊C-均值聚类算法。将连通核与AFCM(Alternative fuzzy C-means)聚类算法相结合,给出基于连通核的核AFCM:CRKFCM(Connectivity kernel based robust fuzzy C-means)。CRKFCM一方面有效地利用了连通核,可以对任意形状数据聚类,且避免了核参数的选取问题;另一方面在特征空间使用非欧氏距离,可以有效地处理含噪声数据的聚类问题。实验结果表明,与原有的AFCM和连通核硬C-均值(CKHCM,Connectivity kernel based hard C-means)聚类算法相比,新算法在处理噪声环境中的任意形状聚类问题方面更有效。展开更多
文摘提出一种新的鲁棒核模糊C-均值聚类算法。将连通核与AFCM(Alternative fuzzy C-means)聚类算法相结合,给出基于连通核的核AFCM:CRKFCM(Connectivity kernel based robust fuzzy C-means)。CRKFCM一方面有效地利用了连通核,可以对任意形状数据聚类,且避免了核参数的选取问题;另一方面在特征空间使用非欧氏距离,可以有效地处理含噪声数据的聚类问题。实验结果表明,与原有的AFCM和连通核硬C-均值(CKHCM,Connectivity kernel based hard C-means)聚类算法相比,新算法在处理噪声环境中的任意形状聚类问题方面更有效。