期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于信息瓶颈理论的鲁棒少标签虚假信息检测
1
作者 王吉宏 赵书庆 +3 位作者 罗敏楠 刘欢 赵翔 郑庆华 《计算机研究与发展》 EI CSCD 北大核心 2024年第7期1629-1642,共14页
虚假信息检测对于维护网络舆情安全具有重要意义.研究表明,虚假信息在信息内容和传播结构上较真实信息具有显著不同.为此,近年来研究致力于挖掘信息内容和信息传播结构,提升虚假信息检测的精准性.然而,现实场景中虚假信息的标注往往需... 虚假信息检测对于维护网络舆情安全具有重要意义.研究表明,虚假信息在信息内容和传播结构上较真实信息具有显著不同.为此,近年来研究致力于挖掘信息内容和信息传播结构,提升虚假信息检测的精准性.然而,现实场景中虚假信息的标注往往需要大量地与官方报道等比照分析,代价较为昂贵,现有方法对标注信息的过分依赖限制了其实际应用.此外,虚假信息传播者可通过在评论区控评等手段恶意操纵虚假信息的传播,增加了虚假信息检测的难度.为此,基于信息瓶颈理论提出一种鲁棒少标签虚假信息检测方法,通过互信息最大化技术融合无标注样本信息,克服虚假信息检测对标签的过分依赖问题;并通过对抗训练的策略模拟虚假信息传播者的恶意操纵行为,基于信息瓶颈理论学习鲁棒的虚假信息表征,在高质量表征虚假信息的同时消除恶意操纵行为的影响.实验表明,该方法在少标签识别和鲁棒性2个方面均取得了优于基准方法的效果. 展开更多
关键词 虚假信息检测 图神经网络 互信息 表示学习 鲁棒表示学习 少标签学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部