期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
鲁京、鲁沪、鲁深、鲁港促进中心成立
1
作者 本刊讯 《山东国资》 2018年第8期14-14,共1页
本刊讯7月18日至21日,鲁京、鲁沪、鲁深、鲁港四个“新旧动能转换促进中心”分别依托潍柴北京、上海齐鲁、深圳东华、华鲁香港等4家省属窗口企业相继挂牌运行。省国资委副主任、党委委员樊军,省国资委副主任、党委委员尹刚,省国资委二... 本刊讯7月18日至21日,鲁京、鲁沪、鲁深、鲁港四个“新旧动能转换促进中心”分别依托潍柴北京、上海齐鲁、深圳东华、华鲁香港等4家省属窗口企业相继挂牌运行。省国资委副主任、党委委员樊军,省国资委副主任、党委委员尹刚,省国资委二级巡视员王绪超分别为4个中心揭牌。 展开更多
关键词 鲁港 鲁深 鲁沪 鲁京 国资委
原文传递
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
2
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部